Light Review: Nextorch P5x Series with ‘Dual-Light’ LED Swapping Mechanism

Multi-LED lights have always had to compromise the main beam by using multiple smaller reflectors or combined ‘compound’ reflectors, both of which affect the beam considerably and create many beam artifacts. With such powerful LEDs to choose from now, it has become more desirable to make the humble torch/flashlight more versatile by giving it more options. Nextorch have re-thought the concept of multi-LEDs, and designed a ‘Dual-Light’ system that allows the user to actually swap the primary LED that is positioned at the focal point of the reflector, so fully maintaining beam quality. The P5x series of lights (part of the ‘Police’ Series) use a special mechanism that changes the active LED and moves that LED to the centre of the reflector, ensuring the beam quality is uncompromised and giving you two beam options in one light.

Taking a more detailed look:

A few different versions of the P5x were provided, and they had slightly different packaging. The box at the front shows the six variants you can choose from; P5G, P5B, P5R, P5W, P5 UV and P5 IR.

For one of the box styles, this is the inside.

The other box style has a moulded plastic tray insert.

Either way, you get the P5x a Nextorch 18650, a USB charging cable, a lanyard and the instructions.

The LED changing mechanism and built-in USB charging blend into the simple, elegant design.

A flattened section of the grip texture provides a space for the engraving.

If you want to add a lanyard to the P5x, you need to snap on the lanyard ring.

The lanyard ring sits tightly into a groove near the tail-cap.

A sleek tail-cap design hides the USB charging very well.

The power switch protrudes slightly and is easily accessible, however no tail-standing is possible.

If it were not for the small engraving of the USB symbol and an arrow, you might miss the charging function.

Following the arrow, simply pull the tail-cap sleeve up and turn it sideways to lock it open.

A micro-USB socket is used for the charging.

USB charging cable connected.

Opposite the USB socket is a charging indicator light. Red while charging, Green when fully charged.

Taking off the tailcap, the negative contact is a sprung button instead of an exposed spring.

The threads are a standard trapezoidal thread and are bare aluminium.

Peering into the battery tube, the positive terminal is a spring.

Looking closely at the head of the P5x, there is an indicator arrow. Here the White LED is selected.

And now the Green LED is selected.

Our first close-up look at the textured reflector and dual LEDs. The white LED is in the central position.

Now the green LED is centred and active.

With the White LED on.

Then the Green LED on.

White LED centred in the reflector. (Note the yellow phosphor colour.)

Green LED centred in the reflector.

Going in even closer with the XP-L V5 LED in the central position and the green XP-E2 LED to the side.

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

Each P5 light features a white LED (XP-L V5), so I’m only showing one of these as they all look the same. With this being a dual-LED light, the beam is very clean without the artifacts you might expect from a multi-LED light. The spill is a medium width and the hotspot transitioning smoothly into the even spill.
All of the beamshots shown here have the same exposure for all beam variations.

Now onto the interesting secondary-LED options. The Warm LED is quite warm (XP-E2 Warm), in fact it is reminiscent of a good old incan but without the curly filament artifacts. The camera is set to daylight for all beamshots to show the relative colour shift. As with the white beam, the Warm beam is clean and free of artifacts.

Similarly with the green (XP-E2 Red), a nice clean beam.

Being UV (1000mW UV), this beamshot is not a very good representation as there is no fluorescent material in the beam; it makes it look very dark.

An lastly the Red LED (XP-E2 Red). The spill of this beam is slightly wider than the other colours.

Moving outdoors now. Again all exposures are the same. Starting with white.

Onto Warm White.

Green.

Clearly UV is not ideal for lighting up your garden, but that is not why you use it. You can see that there is a good throw, despite the lack of fluorescent materials.

And lastly Red. In this case it was a different evening and there was a light rain which is why the beam is showing up more strongly.

Modes and User Interface:

All of the P5x models have the same simple set of modes and user interface.

Control is via the forward clicky tail-cap switch, and there are two constant modes, High and Low as well as Strobe and SOS. Of course with the Dual-LED, this is the same for each LED.

To Switch ON to High, from OFF, half-press or fully press the switch. Momentary action is always on High.
To access the Low mode, from ON with the switch clicked fully on, half-press the switch briefly to access Low. Low can only be accessed from High with the switch clicked ON.

To switch OFF, either release the switch, if only half-pressing it, or press it fully to click it off.

For Strobe, rapidly double-tap the switch from OFF. This must be half-presses, and once Strobe is activated, you can fully click the switch to lock it on.

For SOS, first the P5x must be ON with the switch fully clicked. It can be in High or Low. Then half-press the switch for 3s and SOS will start.

LED swapping is via the control ring at the base of the head. Rotate this to select the LED. You can do this at any time, whatever mode is selected.

Batteries and output:

The P5x runs on a single 18650, which it can recharge, or two primary CR123s.

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
Nextorch P5x using supplied cell I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
P5W White High 722 0
P5W White Low 51 0
P5W Warm High 365 0
P5W Warm Low 41 0
P5G White High 710 0
P5G White Low 50 0
P5G Green High 163 0
P5G Green Low 31 0
P5UV White High 695 0
P5UV White Low 46 0
P5UV UV High 39 0
P5UV UV Low 5 0
P5R White High 707 0
P5R White Low 41 0
P5R Red High 257 0
P5R Red Low 38 0

* Beacon and Strobe output measurements are only estimates as the brief flashes make it difficult to capture the actual output value.

Peak Beam intensity of the measured 16400 lx @1m giving a beam range of 256 m.

There is parasitic drain at 11uA (27 years to drain the cells).

In this first runtime graph there is also a trace from the green output of the P5G. Compared to the white output, this is longer and lower so is included here to give an indication of the reduced efficiency of the coloured LED.

In the second graph the green output has been removed to better show the white outputs. Instead look at the White output from the P5UV and the Warm output from the P5W. Again the cool white LED is more efficient and provides a longer runtime. The Warm White keeps up with the Cool white up to about 2 hours, then drops off with the Cool white running for another couple of hours.

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

No issues were encountered during testing.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The P5x series in use

I first saw the Nextorch Dual-Light mechanism at IWA 2016 and immediately loved the idea. I asked them if they could add a third LED – yet to be seen – and the reply was ‘maybe’; we can live in hope.

Having used many multi-LED lights with different colours in them, though useful, the beams of the secondary LEDs were always badly compromised, and even the main beam was compromised. The Dual-Light is a revelation with the main LED effectively being swapped with a twist of the selector ring – you don’t even need to turn it off.

A trio of dual-lights getting ready to go.

We have had a detailed look over the P5x lights already, but to really show the mechanism, this is a short video of the way it works.

Although it has the LED swapping function, Nextorch have made the P5x a simple and functional light without any external frills. The LED control ring has slightly raised grips which provide a degree of anti-roll, at least enough for relatively level surfaces. There may not be a ‘tactical grip ring’ but the slightly wider tail-cap is enough to let your grip the light securely, and the grip pattern works well (it is not knurling, as the pattern is cut, not rolled).

Fitting the lanyard ring also gives a little more grip (plus you can have a lanyard), but in doing so, I managed to scratch the anodising both fitting and removing the ring, so if you are going to use it, fit it once and leave it on.

Of course it is very convenient to have built-in USB charging, especially if you travel with the light. What would have been useful is to have some indication of the state of charge. There is none, so it is difficult to know if you need a charge or not. Unfortunately this leads to regular topping-up rather than a more planned approach to charging.

Though limited to two output levels (and I generally prefer a few more options including ultra-low) those levels are well chosen for most uses. The lower level at around 40lm is great for indoor use and is perfectly comfortable to use at close range, and the 700lm High level is a good powerful output which a single 18650 can power without being over-burdened.

In the case of Nextorch’s Dual-Light P5x models, the ‘secondary’ LED is actually not secondary at all, instead you have two ‘primary’ LEDs both of which have full and uncompromised use of the reflector, making them as good as dedicated lights using the same LEDs. Your only difficult choice now is which combination of LEDs to go for.

Check out the Nextorch P5x lights on the Nextorch Website here.

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Two Primary LEDs with Dual-Light mechanism to swap between them. No charge level indication.
Uncompromised beam for both LEDs. Limited choice of levels.
Built-in USB charging. No direct access to Low level.
Simple interface. Lanyard ring causes scratches when fitted.
Full kit supplied – Light, battery, cable.
You can swap the LEDs while the P5x is ON.

 

Discussing the Review:

The ideal place to discuss this reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

EdgeMatters – Sponsored Reviews (UK based Forum for Knife Makers and Collectors)

Light Preview-Review: Jetbeam TH20 Prototype

In this special preview review of Jetbeam’s new TH20 we take a look at a prototype of this super powered single 18650 Tactical Hit Series light. Featuring an extreme output XHP70.2 LED, over 3000lm peak output capability, a new triple-switch tail-cap, a dedicated high current ICR cell, but full compatibility with all standard 18650 cells (flat or button top) as well as CR123 cells, this light has a lot to be interested in.

UPDATE – New Tail-Cap and Reflector Swap – Included at the end of the review.

Taking a more detailed look:

Though it was supplied in a Jetbeam box, as this is a prototype, the TH20 packaging is not finalised, so I’m not showing it here. It may be a single 18650 light, but with such high output ratings, the light is somewhat chunkier than most lights in this class

In this case the TH20 was supplied with an open bottom holster, offering only head-up carry. The holster has a D-loop, and both fixed and Velcro closing belt loops.

The ‘TH’ model prefix comes from being part of the Jetbeam Tactical Hit series of lights.

On this prototype it also has the Niteye branding engraved. I don’t believe this will be included on the final production version.

Apart from the huge output, one of the TH20’s special design features is the triple switch tail-cap. Surrounding the central forward-clicky tactical switch is a rocking paddle-switch which activates when pressed on either side. This gives quick and immediate access to the secondary function whichever way round you are holding the TH20.

Two posts protect the main switch from accidental activation and to a degree protect the paddle-switch; they also hold the pivot pins for the paddle-switch. Note that as this is a prototype you can see the pivot pin protruding slightly which it would not on a production model.

A set of cooling find surround the base of the head where the LED mounting board is located.

Inside the tail-cap shows there are several things going on. The negative contact is a double spring with one sitting within the other. As well as the bare threads that make up a connection, there are a set of contacts around the circuit board. Since this prototype was made, the design has been updated.

Square threads are used which are bare aluminium as they form one of the electrical contacts.

To enable the triple-switch tail-cap design to work, there are extra contacts in the tail-cap, and in turn this needs there to be an additional tube fitted within the body of the TH20 allowing this extra connection to be made from the head to the tail-cap. This design feature is the reason I’ve not been able to measure operating current and parasitic drain for this light.

In this sample, the XHP70.2 LED sits in a textured reflector.

That XHP70.2 LED is a bit of a monster, and is classified by CREE as an ‘Extreme High Power LED’.

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

With such a large LED, and a relatively small head (being a single 18650 light) with textured reflector, the TH20 could have been all flood, which, though no bad thing, might be a waste of such a powerful output. However, the TH20 is not all flood, instead you have a well balanced beam with smoothly transitioning hotspot and uniform spill of a reasonable width.

Increase the range, and the hotspot blends even more and you have a super area-light with nothing given a chance to hide in the bright beam.

Modes and User Interface:

The Jetbeam TH20 has four fixed output modes (Turbo, High, Middle, Low) as well as Strobe, however, the output level of the Turbo and Strobe modes depends on if the TH20 is set to High-rate or Low-rate mode.

The TH20 has a special triple switch tail-cap with central forward-click button and a pivoting paddle-switch which provides a button either side of the main click-switch.

As the TH20 is able to work properly with either the special high-discharge cell it is supplied with, or any standard 18650 cell (or even 2xCR123), the design incorporates two output levels for Turbo and Strobe (High-rate or Low-rate). This is set after a new cell is inserted into the TH20.

By default, the action of removing and replacing the cell resets the TH20 to Low-rate mode (and Turbo output). To activate High-rate for Turbo and Strobe, switch ON the TH20 by fully clicking the main switch, then rapidly triple-click either side of the paddle-switch. The output will briefly turn off then on again to indicate it has changed to High-rate output. It will do this whatever output level you are currently using, even Low, but you have prepared the TH20 for High-rate output when using Turbo and Strobe.

To turn onto the last-used constant output mode, either half-press (for momentary use) or fully press-and-click the main switch. To cycle through the output levels Turbo -> High -> Medium -> Low -> Turbo etc, briefly press the paddle-switch.

To access Strobe from OFF, press and hold either side of the paddle-switch. If you hold for less than one second the output is momentary, but if you hold the paddle-switch for more than one second the Strobe will stay on. To turn OFF, either tap the paddle-switch again, or turn the main switch on to activate a constant mode.

To access Strobe from ON, press and hold the paddle-switch and after one second Strobe will start, and stay on for as long as you hold the paddle-switch.

Batteries and output:

The TH20 runs on the supplied specialised high current ICR 4.2V 18650 cell, and when using this cell can be set to run in High-rate output mode. Of course if it could only run on this special cell it would make it a bit limited, so Jetbeam have made the TH20 fully functional using any standard 18650 cell or 2x CR123 cells, but on a ‘low-rate’ Turbo/Strobe output.

The TH20 can use button-top or flat-top cells.

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
Jetbeam TH20 using specified cell I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
Turbo-High – Supplied HR Cell 2895 0
Turbo-High Steady state during runtime – Supplied HR Cell 1046 0
High – Supplied HR Cell 575 0
Medium – Supplied HR Cell 108 0
Low – Supplied HR Cell 14 0
Turbo-Low – AW 18650 or Supplied HR Cell 1561 0
Turbo-Low – CR123 1046 0

It was not possible to measure parasitic drain due to the double wall battery tube design.

There are several graphs to look at for the TH20 as it provides us with a lot of interesting information. In this first graph are four main power options and their output profiles. These are the High-Rate 18650 supplied with the TH20, a standard 18650 cell (an AW 3100mAh), a 20A IMR 18650 (Efest) and CR123. The CR123 is clearly a backup option only and struggles on the Turbo output. What is pleasing to see, and makes the TH20 very attractive, is that the 20A IMR is really not far behind the specialist cell Jetbeam provide. This means you can easily feed the TH20 with readily available cells.

Looking in at the first part of the graph you can see more easily how the HR and IMR cells run on the High-rate output, and the 18650 and CR123 run on the low-rate output. The CR123s don’t manage any form of ‘burst’ output for Turbo.

To really see what the TH20 can do, in the next test I pushed it to the max by switching it off and on again to reset the Turbo output every time it ramped down – this was to push it as hard as possible. The test was carried out with a strong cooling fan and during this test the highest recorded temperature anywhere on the TH20 was 47C.

Expanding the first part of the graph where the TH20 is working really hard, shows that with a fully charged cell the TH20 can manage three full output bursts, before the bursts start to reduce. After 8 full bursts, the output then drops to under 2000lm, but is still well over 1500lm.

In this last graph I’ve included a direct competitor for the TH20, the NITECORE TM03. The measurements were taken at the same time in the same conditions using the cells supplied by the manufacturers, so is the closest comparison I can make. It is however not the full story. The TM03 is much more dependant on the specialist cell whereas the TH20 is much more compatible and runs very well on an IMR. Also note that though the TM03’s initial burst is longer, the output drops much more, so the TH20 maintains a brighter running level.

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

Being a prototype troubleshooting is not that relevant, however just to mention that the original prototype tail-cap design shown has been changed and improved during this preview testing process.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The TH20 in use

Extreme output lights have their limitations, and you need to understand these to get the most out of yours. One of those limitations is that you will only get those magical monster output figures from fully charged batteries. Once you get down to 80% cell charge or less and those outputs are drooping severely. So how practical are they?

There are several things about the TH20 that for me make it a great deal more practical than some of the other options. The first of these is its support of various power options, from the high-rate special 18650 cell shipped with it, to the ever reliable CR123 which you can use as a backup. Then, to accommodate this feature, Jetbeam have taken a very clever approach of having the TH20 run in two modes, either high-rate or low-rate, for the Turbo and Strobe outputs. If you know the battery you are using can take it, you can switch to high-rate and get that extreme output, but if not, you can leave it in low-rate and run the TH20 in a more typical (but still bright) single 18650 output.

To make this as simple to live with as possible, the TH20 defaults to the low-rate mode whenever the tail-cap is fully removed (as you do when chancing the cell), so you never need to worry about being in the wrong output mode. Should you want to use high-rate output, then turn it on, triple tap that paddle-switch and off you go. If you switch the TH20 into High-rate with a protected 18650 that cannot deal with the current, you will find a very effective way of testing the protection circuit (it will trip).

In true terms, for LEO and Military ‘tactical’ use, a switch needs to be as simple as is can be. In times of high stress you won’t be thinking about modes, or where your thumb is, or where a switch is; you want to hit a big button and have the light come on. Multi-switch, multi-mode lights will, I think, always be more appropriate for enthusiasts or home/self defence users than the professional, but I’ll let you make you own mind up on that.

Having said that, I do think this is one of the best multi-function tactical tail switches I’ve used. Starting with the relationship between the switch and the raised posts either side of it, there is a good amount of protection from accidental activation, yet still plenty of access to the switch, even if you have to go over the top of those posts to press the switch.

The secondary switches both perform the same function so it doesn’t matter which one you hit. Interestingly your thumb most naturally falls onto the main power switch without hitting these secondary switches and you need to positively move your thumb to press them, which is further helped by their rounded edges. To be clear, this is a good thing, as accidentally blasting yourself with over 3000lm of strobe is NOT a good thing, and changing modes when you didn’t want to is also bad. The combination of easy to reach, whichever way round you hold the TH20, and difficult to press by mistake, makes the TH20’s additional switches on the tail-cap a well implemented feature.

Beware that whenever you change the battery or remove the tail-cap, the TH20 will reset to Turbo output. I’ve found this a little frustrating as I’d definitely prefer to start on Low and work my way up, especially if trying to conserve power. However it could be argued that in a ‘tactical’ situation, that after changing the battery you might want to go straight to maximum output.

Another aspect I was not so keen on was the order of the modes. I prefer to change up through modes, starting low and working up in brightness. The TH20 starts high and works down, so taking the default of a new battery being fitted, you are on Turbo, and then have to go to High, Medium, then Low (and then back to Turbo). Again, as with the previous point, in a ‘tactical’ situation, it is preferable that if the mode switch is accidentally pressed, instead of going from Turbo to Low, you go from Turbo to High, still leaving you with lots of light; so being a ‘Tactical Hit Series’ light the design choice makes sense.

Of course, the TH20 is bigger and heavier than most single 18650 lights, but that is because it houses an extreme output LED and the circuitry needed to drive it, giving you the ability to output bursts of over 3000lm. The TH20 is a heavy-duty single 18650 light that, thanks to that extra mass and solid build, even during the stress test (where the it was run at a constant maximum output by resetting every 60s), did not heat up excessively, nor suffer from thermal output throttling.

By using the easily available 18650 for power but staying away from proprietary cells, Jetbeam have really done us a favour and made the light much more useful, versatile and future-proof.

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Extreme brightness output from one 18650. Does not appear to quite reach specified output.
High and Low rate outputs to suit the cell being used. Resets to Turbo Output when changing the battery.
Monster XHP70.2 LED. Open bottom holster exposes the switches.
Functional Triple-switch tail-cap.
Compatible with any standard button-top or flat-top 18650 cell.
Can use CR123 cells.

UPDATE – New Tail-Cap and Reflector Swap:

This update includes a few details not available when the review was originally posted. The tail-cap design has been updated and there are two reflector options. With my preference for (OP) textured reflectors, I’ve swapped the reflector in the newer higher output sample.

Starting with the prototype, the bezel ring is unscrewed and the lens, o-ring and reflector are easily taken out. If you do this make sure you don’t touch the inside of the reflector.

The lens is a good thickness, being nearly 3mm thick.

There is a groove around the reflector for the o-ring to sit in.

Here are the OP and SMO reflectors.

Before putting things back together, a quick look at the brass pill with LED and mounting board.

Although the initial prototype will be shelved, it has the SMO reflector fitted to show both options.

Lastly, we have the updated contacts inside the tail-cap. To save lots of scrolling back up, first here is the prototype tail-cap.

Then we have the updated version.

 

Discussing the Review:

The ideal place to discuss this reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

EdgeMatters – Sponsored Reviews (UK based Forum for Knife Makers and Collectors)

Knife Review: Spyderco SpydieChef

Sometimes it’s all in a name… and ‘SpydieChef’ immediately lets you know this is a small (folding and EDC-able) Spyderco Chef’s knife. Of course it is a blend of exotic ingredients, made to that special Spyderco recipe, and is capable of so much more than just chopping a few vegetables. The SpydieChef is designed to deal with all-round EDC tasks as well as kitchen duties, is built using ultra-corrosion-resistant materials (it is a member of Spyderco’s Salt Series), and is finished to the high level of quality that we have come to expect in Spyderco products.

The Blade and Handle Geometry:

Most knife specifications have a basic description of the blade geometry, but in this section I will be taking a more detailed look at geometry and balance.

Using a set of gauges and precision measuring equipment including a Vernier protractor, callipers, fixed radius gauges and the unique Arc Master adjustable radius gauge (the one that looks like a crossbow).

These measurements have been tabulated and are presented along with a few reference blades (8″ Chef’s Knife, 5.5″ Santoku and the popular Fällkniven F1).

Key aspects such as the primary bevel angle, grind type, blade depth, blade thickness, length, weight are detailed, along with balance information.

The ‘Balance relative to the front of the handle’ tells you if the knife will feel front heavy, or if the weight is in your hand (a positive value means the weight is forward of the front of the handle). The ‘Balance relative to the centre of the handle’ indicates how close to a ‘neutral balance’ the knife has in the hand.

In the case of full convex grinds the approximate centre of the grind is used for the primary bevel angle estimate.

The blade is made from LC200N steel, a state-of-the-art nitrogen-based alloy, which is extremely corrosion resistant and is actually used by NASA for the ball bearings used in aerospace applications.

A few more details:

Spyderco’s standard sleeve box is used for the SpydieChef.

Inside the box the knife comes in a bubble wrap bag along with a product information leaflet.

Let’s just take a moment to appreciate those lines…

Using flat Titanium handles and a Reeve Integral Lock keeps the design streamlined and simple.

The gently curving and elegant design is by the Polish custom knifemaker Marcin Slysz.

Being a Spyderco, we have a Spyderco wire pocket clip. This can be fitted to either side of the knife for a tip-up carry.

The alternate clip position with blanking screw. If you swap the clip side, you need to swap the screws round as they are different lengths. The Lanyard hole is lined to make it easy to fit cord through both sides of the handle.

A 12mm opening hole is comfortable to use for right-handers and has a nice cut-out in the handle to give easy access, but as you can see, the reverse of the hole is partially blocked by the lock bar, so this is not ideal for left-handers.

Details ‘make’ designs, and in this example, the finger guard formed by the handle titanium, and the spine of the blade have been positioned such that they line up when the blade is closed, keeping the outline of the closed knife smooth and tidy.

To make the SpydieChef easy to clean, small spacers have been used to give as much access as possible into the handle.

Here I’m showing two specific details of the lock-bar spring, the first is the thinning of the handle scale to reduce the spring tension, and the second is the stress-reducer hole drilled at the end of the lock-bar slot.

Similarly there is a stress-reducer hole drilled at the corner of the lock-bar cut out in the titanium scale.

Here the blade is in the closed position sitting against the stop pin. There is also a hint of that phosphor-bronze washer.

Lock engagement is excellent, with room to move as the lock wears, but with a positive overlap which won’t slip out under pressure or if knocked.

The open blade sitting onto the stop pin.

Though compact enough to fit into a folding pocket knife the Marcin Slysz blade design is immediately reminiscent of a kitchen knife. Marcin Slysz’s logo is included on this side of the blade.

The other side of the blade has the Spyderco branding as well as the steel specification.

Flowing lines sweep the blade tip nicely into the handles in the folded position.

A closer look at the blade tip. Note that the entire blade spine has had the edges eased so they are very slightly radiused and smooth.

What it is like to use?

We’ve had a good look round this knife, but what really counts is how it is to use and cut with. Take a special purpose knife and make it into a folder and you immediately introduce compromises, so this was always going to be a challenging design to get right. Also considering that the chef’s knife, by the very nature of being taken out of the kitchen and put into your pocket as an EDC blade, will now be used for so much more than just kitchen duties, so some compromises have to be made.

I’ve used other folding kitchen knives, and after considerable use and comparison, I’ve found the only advantage they had over the SpydieChef was a thinner blade. A thinner blade which only gave a slight advantage on a chopping board in a kitchen, and in no other situation when carrying the knife as an EDC blade. The thinner blade always flexed far too much for EDC tasks and become more of a liability than an benefit.

Before we look further at the SpydieChef in use, to give an idea of scale, here it is next to the Fällkniven F1 and a Spyderco UK Pen Knife. It is a very pocketable size knife which is helped by the slim profile, but has enough blade to be useful. Clearly you will struggle to chop large vegetables with this knife, but it is an EDC folder and not a substitute for a full sized Chef’s knife.

Something I do want to mention is that Spyderco definitely get the blade retention detent resistance right. The reason for mentioning this is that I’ve come across certain knives with integral locks where the detent is far too stiff and should you touch the lock bar when trying to open the blade you have had it, the blade is virtually locked in place – not so with the SpydieChef. The blade is perfectly secure in the closed position, so let’s get that clear, but then regardless of how you hold it, fingers on the lock bar or not, the blade opens with a slight resistance that is easily overcome with the 12mm opening hole. I don’t want to be thinking about how I have to hold a folded knife to open it (beyond the basics of which way the blade swings open), so this is a major factor and over stiff detents on integral locks have ruined otherwise good knives. Spyderco have consistently got this right and in this case I nearly forgot to mention it as I hadn’t noticed any issues or hang-ups opening this knife, so it went out of my mind.

Slim, flat slab handles can often become uncomfortable in use quite quickly, but their low profile makes them easy to carry. However, the curving handle of the SpydieChef does a very good job of resting over your fingers and sitting into your hand in a perfectly comfortable way despite its slim flat profile.

The SpydieChef sitting comfortably in my hand (XL glove size) with my forefinger nestled up to the integral finger guard.

Absolutely crucial for a kitchen knife is it ability to be used cutting down onto a chopping board. This requires clearance for the fingers when the edge is in contact with the board. As well as the clearance, it helps cutting control enormously to have a curved edge that allows you to rock the blade for fine chopping or to apply controlled cutting force to harder foods like nuts while keeping the edge in contact with the board. The geometry of the SpydieChef has this absolutely nailed, and I’ve been chopping away without rapping my knuckles and no food pinging off the board.

I mentioned it earlier, compared to an actual kitchen knife, the blade is thicker (an EDC compromise) and this does mean that the knife does not fall through firmer and larger vegetables like a thinner blade does. Instead you can get that slight snapping action at the end of the cut, but the full flat grind does a good job of parting the cut, and these crisp chestnut mushrooms which can be quite fragile and break up with wider blades have stayed in nice slices without cracking or other signs of stress.

It might not really be much of a challenge for a knife, but the combination of a tough skin and the soft flesh means a less than capable knife can make a real mess of an avocado, but not in this case where the only limit was user skill.

Breakfast is served…

In terms of kitchen capabilities, the fact I can pull this from my pocket and work with it happily, and at the same time not worry about any residues making their way into the handle or pivot, makes this a huge winner for those days when food prep is a big priority; holidays, camping, picnics, workplaces and more.

With the ultra-corrosion-resistant nitrogen-based LC200N blade, phosphor bronze washers and titanium handle, the SpydieChef doesn’t mind getting dirty, being exposed to corrosive juices and otherwise being left to marinade with the rest of the cooking. You can even pop it in the dishwasher for cleanup afterwards.

Where the SpydieChef gives you extra, is that it is capable of so much more than the light cutting duties of just food prep. The blade is thick enough for you to really grab a handful of that handle and put it to some hard work on tougher materials (and the LC200N will keep its edge longer than an H1 blade will). Mixing it up between food and non-food use might mean a few washes or wipes in between, but this single knife can do it all.

I’ve always been a fan of the kitchen knife as a general purpose blade and have carried both modified and unmodified chef’s knives into the field, so personally I find the SpydieChef’s style and shape ideal as an EDC blade.

Review Summary

The views expressed in this summary table are from the point of view of the reviewer’s personal use. I am not a member of the armed forces and cannot comment on its use beyond a cutting tool or field/hunting knife.

Something that might be a ‘pro’ for one user can be a ‘con’ for another, so the comments are categorised based on my requirements. You should consider all points and if they could be beneficial to you.

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Chef’s knife style blade. Blade is a little too thick for easy slicing of hard vegetables.
Ultra-corrosion-resistant materials. Cleanup can be a bit fiddly.
Good cutting clearance for chopping onto a board. Not so good for left-handers.
Slimline, lightweight and easy to carry.
Ergonomic curved handle.
Ideal detent resistance.

 

Discussing the Review:

The ideal place to discuss this reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

EdgeMatters – Sponsored Reviews (UK based Forum for Knife Makers and Collectors)

BladeForums – Knife Reviews (US based Forum for Knife Discussion)

CandlePowerForums – Knife Reviews Section (Largest and Friendliest Flashlight Community Forum)

Light Review: FOURSEVENS Preon P1 Copper Limited Edition

FOURSEVENS’ Preons have been very popular and well regarded AAA powered EDC lights. After their latest reboot (previously reviewed), this is the special edition solid copper version. Grab one while you can here and don’t miss out on the copper goodness.

Taking a more detailed look:

Unlike the standard edition Preons, the Copper version does not come in a clear plastic box, instead it comes in a presentation cardboard box.

The contents are nicely laid out.

Included are the Copper Preon P1 (in a protective plastic case), a Duracell AAA cell, and the instructions. That plastic protector is to ensure that the Copper P1 arrives while still a Copper colour. The patina and darkening can then develop over time as you use it.

The Copper Preon is exactly the same in design, dimensions and machining as the standard P1, just made of solid Copper instead of aluminium.

Every part that was aluminium in the standard version is Copper, including the switch button cap.

Taking a closer look at the bare Copper machined surface.

With the small reflector and XP-L LED, the Preon P1 is set for an excellent EDC beam.

The XP-L LED and textured reflector.

With the head removed (for inserting the battery) the contacts can be seen.

The threads are standard and cleanly cut.

Shining another Preon down the battery tube allows us to see the negative spring contact.

FOURSEVEN’s logo is engraved on the switch button cap.

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

Starting indoors with the P1, it has plenty of power for your close range EDC needs, with a nice wide, soft, hotspot and wide spill.

At outdoor ranges the Preon struggles as it is only a single AAA powered light and has a flood orientated beam. These exposures are long to show anything. The P1 doesn’t have much impact.

Modes and User Interface:

Just as with both the standard Preon P1 and P2, the special edition Copper P1 operates in the same way with a forward-clicky switch.
In total, there are 7 output modes which can be used – Low, Medium, High, Strobe, SOS, Beacon (high), Beacon (low).

To fine tune the Preon to your needs, you can set one of 5 possible ‘Configurations’ which have only certain modes available:
Configuration 1: High
Configuration 2: Previous, High, Low
Configuration 3: Previous, High, Strobe
Configuration 4: Previous, Low, Medium, High, Strobe
Configuration 5: Previous, Low, Medium, High, Strobe, SOS, Beacon (high), Beacon (low)

By default, configuration 2 is set. To change configuration, rapidly press the switch 10 times within 2s, holding or clicking the tenth press.
At this point the Preon will flash 1 to 5 times to indicate the selected configuration.
Quickly turn the Preon OFF and ON again to move to the next configuration, and repeat until you have the desired configuration. To memorise the setting, turn the Preon OFF for 5 seconds.

The Preon has a memory of the last mode used. This is relevant only on Configurations 2, 3, 4 and 5.
To change to the next mode in the chosen configuration, turn the Preon OFF and ON again within one second.
As shown in the Configuration list above, when you first turn the Preon ON, you get the ‘previously used’ output mode. When you then change mode, you jump to the start of the set of modes for that Configuration.
For example, if you are set to Configuration 5 and previously used Strobe, when you first turn the Preon ON you get Strobe, and when changing modes the next mode becomes Low, Medium… (In this example you do not go to SOS as the next mode).

Batteries and output:

The Preon P1 runs on AAA Alkaline or NiMh.

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
Preon P1 Cu using specified cell I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
High 97 1000
Medium 50 1000
Low 7 1000

* Beacon and Strobe output measurements are only estimates as the brief flashes make it difficult to capture the actual output value.

Peak Beam intensity measured 200 lx @1m giving a beam range of 28 m.

There is no parasitic drain.

The Preon P1 Cu exhibits the FOURSEVENS ‘Burst Mode’ behaviour. When on maximum output the first three minutes are at a higher output before dropping to a slightly lower level for the remainder of the runtime.

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

No issues were encountered during testing.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The FOURSEVENS Preon P1 Copper in use

If you have read my other Preon review, then this will be mostly the same as the light is the FOURSEVENS Preon, just in a lovely raw Copper. I’m including the impressions of the current Preon as they are just as relevant to this special edition as the standard ones.

When compared to the previous generation Preons, these new versions are slightly chunkier, and initially I was not entirely convinced, as the point of an AAA light is to be very small. But then I remembered that as much as I love the older Preons they were always a bit slippery. The smooth body wanting to slide around and not giving much of a grip.

With the new Preons having a grip pattern over the entire length of the light, no longer do you get this slippery feeling. One further observation though, is that these grooves tend to pick up pocket fluff nicely, which does somewhat spoil the look.

Personally I preferred the previous UI where it had no memory, but for some a memory is a requirement as you can pre-select the output you generally use. However, as the memory only affects the mode at switch-on, after which the mode selection goes to the first of the modes in the current Configuration, it only takes one mode change to return to Low.

Unfortunately another aspect has changed in the new version, PWM is rearing its head. The previous Preons had PWM but at 2500Hz and was not noticeable to the naked eye; the new version has PWM at 1000Hz. On High and Medium this has not really been visible, but on Low, I do catch the strobing effect out of the corner of my eye. A minor irritation and not what I would expect of FOURSEVENS. It slightly takes the edge off what could be a great update to this well loved series.

It used to be more common for smaller EDC lights to go with a reverse-clicky switch, but as in earlier versions, the Preon does use a forward-clicky and gives you that immediate response to pressure on the switch.

A great feature that has been added to the Preons is the user-changeable configuration that allows you to limit which output modes can be selected. You don’t get to choose which modes are included in a ‘configuration’ but you can choose one of the five available ‘configurations’ to best suit your needs. This user configuration has great potential and I hope FOURSEVENS expand the number of configurations that can be chosen from.

With the small power source of AAA, the added efficiency of the XP-L (though only around 9%) makes a difference. Thanks to the XP-L having an XM-L2 size die in a smaller package, it is compact enough to be fitted into the Preon’s head and provide a great EDC beam.

The new Preon doesn’t just have a new body design, it has user-configuration and an XP-L LED, and in this special edition version you have a solid Copper body that with age and develop it own unique and attractive patina.

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
It’s Solid Copper. PWM at 1000Hz giving some strobe effects on low.
XP-L LED in a truly pocket-sized light. Copper marks easily and tarnishes.
User configurable. Copper is heavier.
Great EDC beam.

 

Discussing the Review:

The ideal place to discuss this reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

EdgeMatters – Sponsored Reviews (UK based Forum for Knife Makers and Collectors)

Knife Review: Morakniv Kansbol with Multi-Mount

Released along with Morakniv’s Garberg and Eldris models, this knife is actually an update of their classic and very popular ‘2000’ Hunting knife. Headlined as Morakniv’s “Primary All Round Knife” – meet Kansbol.

 photo 00 Kansbol Forest P1060917.jpg

The Blade and Handle Geometry:

Most knife specifications have a basic description of the blade geometry, but in this section I will be taking a more detailed look at geometry and balance.
 photo 16 Kansbol grind P1250033.jpg

Using a set of gauges and precision measuring equipment including a Vernier protractor, callipers, fixed radius gauges and the unique Arc Master adjustable radius gauge (the one that looks like a crossbow).
 photo Knife measuring P1180483.jpg

These measurements have been tabulated and are presented along with a few reference blades (8″ Chef’s Knife, 5.5″ Santoku and the popular Fällkniven F1).

Key aspects such as the primary bevel angle, grind type, blade depth, blade thickness, length, weight are detailed, along with balance information.
 photo 17 Kansbol angle P1250040.jpg

The ‘Balance relative to the front of the handle’ tells you if the knife will feel front heavy, or if the weight is in your hand (a positive value means the weight is forward of the front of the handle). The ‘Balance relative to the centre of the handle’ indicates how close to a ‘neutral balance’ the knife has in the hand.
 photo 15 Kansbol balance P1250032.jpg

In the case of full convex grinds the approximate centre of the grind is used for the primary bevel angle estimate.

 photo Kansbol parameters.jpg

The blade is made from 2.5mm Swedish stainless steel 12C27.

Explained by the Maker:

The reasons for certain design choices may not be clear when simply looking at an object, so this section is intended to give an insight into the thinking behind a design by speaking to the designer themselves.

Unfortunately I can’t always get time with the designer so will use this section to include relevant information about the knife and its designer.

This is an interview by Tactical Reviews with ‘Head of Production’ at Morakniv, Thomas Eriksson, from IWA 2017.
The discussion includes how the factory edge is created, maintained and also includes micro-bevels and zero-grinds. It is 16 minutes long, so you might want to come back to this after reading the rest of the review.

Video Edited with – Cyberlink Director Suite 5 (PowerDirector 15 and AudioDirector 7)
Camera – Panasonic HC-V770    Microphone – Tonor TN120308BL and/or Takstar SGC-598

A few more details:

As with the recently reviewed Garberg the Kansbol has a standard , and Multi-Mount version. As before, the standard version shows the knife on the front of the box, and the Mulit-Mount version, the knife in its sheath and mount.
 photo 01 Kansbol boxed P1240609.jpg

Starting with the standard version, out of the box, the belt loop is not locked into place.
 photo 02 Kansbol unboxed P1240612.jpg

You can see the proudly displayed ‘1891’ (the date when it all started for Morakniv).
 photo 03 Kansbol 1891 P1240613.jpg

The belt loop can easily be removed if you would like to use the click-lock sheath on its own. (Click-lock is a system where lugs in the sheath click into corresponding depressions in the middle of the handle to securely hold the knife in the sheath, even when worn round the neck.)
 photo 04 Kansbol belt loop P1240617.jpg

For normal belt mounting, just push the belt loop all the way to the top until it clicks into place. Once fitted to your belt, you can pop the sheath out of the belt-loop ring leaving the belt loop on your belt so you can stow the knife elsewhere.
 photo 05 Kansbol belt loop on P1240620.jpg

Immediately distinctive, even within the Morakniv range, the dual-grind all-round blade of the Kansbol.
 photo 06 Kansbol blade P1240637.jpg

The spine has been ground to have sharp corners for striking sparks from ferrocerium rods.
 photo 07 Kansbol blade spine P1240638.jpg

With its Scandi-grind, thanks to the additional profiling that thins the front section of blade, it gives the blade a very different appearance to the standard Scandi-grind blade we are used to.
 photo 08 Kansbol blade P1240641.jpg

Much like the Garberg, the Kansbol has the symmetrical handle that allows for forward or reverse grips, but the Kansbol also has a TPE (a rubbery polymer) coating over the polypropylene handle core.
 photo 09 Kansbol butt P1240642.jpg

Next up is the Multi-Mount version. In the box, all the components are slotted together.
 photo 10 Kansbol MM out of box P1240652.jpg

Included are the plastic holster, a belt loop, a locking strap, three hook and loop straps and the multi-mount itself.
 photo 11 Kansbol MM parts P1240657.jpg

The simplest configuration you can use the Multi-Mount, is to have the bare sheath held in the mount with a hook and loop strap. The click-lock of the sheath keeps the knife in place.
 photo 12 Kansbol MM basic P1240769.jpg

For total security, the locking strap can be added.
 photo 13 Kansbol MM locking P1240775.jpg

Turning the Multi-Mount over, you can see how the locking strap is fed through the mount and will keep everything in place even if the hook and loop strap failed.
 photo 14 Kansbol MM locking under P1240778.jpg

What it is like to use?

Morakniv are extremely good at making comfortable knives, and though the Kansbol’s handle is not shaped in the way the Companion and Bushcraft models are, you can work with it for hours on end. The handle is a size that will work well for almost anyone (I take XL size gloves), and in line with many of the other Morakniv knives, the blade length is easy to wield for all those every day tasks.
 photo 10 Kansbol in hand P1240645.jpg

As you would expect, the Scandi-grind of the Kansbol takes all things wood related in its stride. What is not shown here is the fact that the additional profiling of the forward section of the blade makes it well suited to many tasks a standard Scandi-grind blade is not. This includes food preparation, and game preparation where the slimmer blade cuts deeply much more easily.
 photo 18 Kansbol whittle P1250215.jpg

Before jumping to the Multi-Mount, something to mention about the belt loop, is that thanks to its click-fit to the sheath, you can easily remove the sheath from the loop, and stow the knife in you pack, leaving just the loop on your belt.
In the Garberg review, I showed the Multi-Mount fitted to the back of the rear seats of my car. As the Multi-Mount is so versatile and opens up so many options, there are far too many to show, but to illustrate just one, in this case I’ve used the hook and loop straps to fit it to a walking stick.
 photo 19 Kansbol MM stick P1260339.jpg

I’ve been appreciating how useful it is to have the knife to hand like this, but in the UK this is really only suitable in more rural areas where the sight of a working tool does not cause distress to anyone.
 photo 20 Kansbol MM stick P1260344.jpg

Although the Kansbol will work hard, I’d not choose to be batoning with it too much. Given its proper place as a general purpose knife, it does this job fantastically well. Hopefully by re-launching this knife blade (from the ‘2000’ model), Morakniv will bring the benefits of the profiled blade more into the limelight.
 photo 00 Kansbol shelter P1060926v6.jpg

Tactical Reviews – Review Summary

The views expressed in this summary table are from the point of view of the reviewer’s personal use. I am not a member of the armed forces and cannot comment on its use beyond a cutting tool or field/hunting knife.

Something that might be a ‘pro’ for one user can be a ‘con’ for another, so the comments are categorised based on my requirements. You should consider all points and if they could be beneficial to you.

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Additional blade profiling makes this an excellent all-rounder. Considering the high value for money of this knife, adding anything in this column would be simply for the sake of it. In true terms there really isn’t anything to knock this down on.
Tough and lightweight.
Flexible mounting options.
Ambidextrous.
Comfortable for extended use.

 photo 00 Kansbol Forest P1060926v3.jpg

 

Discussing the Review:

The ideal place to discuss this reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

EdgeMatters – Sponsored Reviews (UK based Forum for Knife Makers and Collectors)

BladeForums – Knife Reviews (US based Forum for Knife Discussion)

CandlePowerForums – Knife Reviews Section (Largest and Friendliest Flashlight Community Forum)

Gear Review: NITECORE SC2 Charger and F1 Charger / Powerbank

With so many chargers to choose from, it can be difficult to pick one, so you may be looking for those models with a little more to offer. NITECORE’s SC2 and F1 chargers both have extra features that make them stand out, so let’s see what they are.

A few more details of the F1:

Starting with the smaller F1. Well ‘smaller’ doesn’t do it justice, this is tiny. I must also point out straight away, that this is not just a charger, but it is a powerbank as well. (NOTE: The F1 is only intended for charging Li-ion cells and needs a Li-ion for use as a USB powerbank.)
 photo 01 F1 boxed P1200108.jpg

Along with the F1, you get two rubber bands which are used to secure an 18650 in the charging slot. This is for when you use the F1 as a powerbank and want the cell to stay in place when you carry it.
 photo 02 F1 box contents P1200126.jpg

At one end of the F1 is a micro-USB socket which is used for the input power to charge the cell fitted into the F1.
 photo 03 F1 input P1200133.jpg

Switching to the other end, the F1 has a full size USB socket which can provide USB power output up to 1000mA.
 photo 04 F1 output P1200135.jpg

The F1 contacts are gold plated.
 photo 05 F1 contacts P1200140.jpg

With a spring loaded sliding contact, the F1 can be used for any of the following Li-ion cells; 26650/18650/17670/18490/17500/17335/16340(RCR123)/14500/10440.
 photo 07 F1 slider P1200150.jpg

Underneath is basic information about the input/output ratings of this charger/powerbank.
 photo 06 F1 underneath P1200144.jpg

A few more details of the SC2:

With the SC2 we have quite a step up in power, and one of the headline specifications is a 3A charge current (if using 3A in one slot the other can only provide 2A), ideal for IMR or high capacity cells. This charger is compatible with a huge list of cells including both Li-ion and Ni-Mh cells.
 photo 01 SC2 boxed P1220057.jpg

With the SC2 you get a suitable mains lead (in this case a UK plug) and the instructions. Don’t throw those instructions away, you will need them.
 photo 02 SC2 box contents P1220065.jpg

Relatively plain looking the SC2 is full of functionality.
 photo 03 SC2 angle top P1220075.jpg

On the top end of the SC2 are the inputs and outputs. The yellow figure-8 socket is for the mains lead. There is also a 12V DC input for use in a car. Above the mains input is a full size USB socket which provides up to 2.1A USB charging output.
 photo 04 SC2 inputs P1220078.jpg

Considering its capabilities, the layout is very simple. There is an indicator panel (lights only, no digits are displayed), two control buttons, and the two slots.
 photo 05 SC2 top P1220083.jpg

On the underneath there are four rubber feet and the list of supported cells.
 photo 06 SC2 underneath P1220084.jpg

It’s a huge list of supported cells; IMR / Li-ion / LiFePO4: 10340, 10350, 10440, 10500, 12340, 12500, 12650, 13450, 13500, 13650, 14350, 14430, 14500, 14650, 16500, 16340(RCR123), 16650, 17350, 17500,17650, 17670, 18350, 18490, 18500, 18650, 18700, 20700, 21700, 22500, 22650, 25500, 26500, 26650
Ni-MH(NiCd): AA, AAA, AAAA, C, D
 photo 07 SC2 compatibility P1220088.jpg

The contacts are the typical chrome plated type.
 photo 08 SC2 contacts P1220095.jpg

A nice detail is that the NITECORE name is stamped into the slider contact.
 photo 09 SC2 slider P1220099.jpg

All the various options are selected using the two buttons. The C and V represent the Current and Voltage settings you can select.
 photo 10 SC2 buttons P1220100.jpg

When first powered on, the SC2 shows a set of lights indicating the default of 2A charging current.
 photo 11 SC2 lights P1220107.jpg

What are they like to use?

The F1 is one of those ‘don’t need to think about it, just buy it’ products for me. Combining the function of a Li-ion charger and powerbank into a tiny, easy to carry, device just makes it a must have EDC device.
When you insert a cell, it also tells you the voltage, so will work as a cell checker as well. If you use li-ions and have a smart phone, you will want one of these.

I’ve given the review sample a really hard time, with the worst conditions being the F1 having a 26650 fitted and used as a powerbank for a set of USB lights that try to draw 3A. Considering this should only output 1A, the actual output current was around 1.5A. Like this it was allowed to run constantly all day for a couple of weeks, swapping the 26650 when required. During this time the F1 did get hot, but expecting this to become a destructive test due to the extended abuse, I was impressed to find the F1 survived this without any issues.

For more details, have a look at the instructions by clicking on this image for the full size version. (Depending on your browser you might need to ‘right-click’ and ‘open in new tab/window’.)

Hidden within the casing are three green indicator lights. These tell you the cell voltage when inserting a cell, the remaining capacity when using as a powerbank, or the charging status when charging a cell.
 photo 08 F1 lights P1200154.jpg

The ideal cell for powerbank use is an 18650, and the supplied rubber bands fit this size cell perfectly. This is how it looks when you have it ready to carry as a powerbank.
It is important to note that there is parasitic drain when in Powerbank configuration which in the sleep/low power mode measures at 390uA. When using a 3100mAh cell it will take 331 days to drain the cell.
According to the YZX Studio Power Monitor, the output of the USB charging port is ‘Android DCP 1.5A’ meaning the D+ and D- lines are shorted.
 photo 09 F1 powerbank P1200158.jpg

Once you are back at home/work, just top up the cell with any USB charging point. Of course another major advantage of the F1 as a powerbank is that you can carry spare cells for it, and swap as needed.
 photo 10 F1 charging P1200169.jpg

Now onto the SC2. This is a very versatile charger, but I have to say it has not been the easiest to work with. Using the defaults is easy. Turn it on, and pop in your cells, the SC2 will charge them quickly, but it is when you want to change modes that it hasn’t been that easy. Because of this I’m not even going to attempt to explain so you definitely will want to refer to these instructions. I did find that some double clicking was required to enter manual mode. This is not mentioned in the instructions, so if it is not responding as you expect, try a double click.
Click on this image for the full size version. (Depending on your browser you might need to ‘right-click’ and ‘open in new tab/window’.)

Here is an IMR cell (from the TM03) charging on defaults. It is now displaying a full charge, as during charging the current lights show the charging current, and the voltage lights are used to display charging status with three LEDs. Once the three LEDs remain on steady, the cell is fully charged.
 photo 12 SC2 lights with cell P1220112.jpg

It is important to note that due to the high charging current, the SC2 will terminate a little early. You don’t quite get a completely full charge. You can always pop the mostly full cell into another charger for that final top-up but you don’t really need to.
This graph has three traces on it and two of them compare the SC2 and D4 chargers (both used to charge the TM03s’s cell).
The SC2’s slightly early termination can be seen with the earlier drop to low mode at around 1h 20m. Considering the vast reduction in charging time, this minor loss in overall output is well worth it.
 photo TM03 runtime.jpg

There is one major design flaw with the SC2 sent to me. The numbers on the display to show current and voltage are only printed on the plastic film on the display. When you unpack the charger you normally expect to remove a protective film from the display. As you do this, you find the numbers come off as well!
I had to put the film back on after finding this which is why there are some bubbles under the film.
My advice is to NOT remove the protective film (unless you have confirmed the number are now printed on the actual display.
 photo 13 SC2 lights close P1220116.jpg

As explained in the user manual, Slot 2 and the USB charging output contend with each other. If the cell in Slot 2 is charging the USB output is stopped. So you can charge a cell in Slot 1 and a USB device at the same time, but if using Slot 2, only once the cell is charged does the USB charging work.
 photo 14 SC2 USB charging P1220122.jpg

Review Summary

The views expressed in this summary table are from the point of view of the reviewer’s personal use. I am not a member of the armed forces and cannot comment on its use beyond a cutting tool or field/hunting knife.

Something that might be a ‘pro’ for one user can be a ‘con’ for another, so the comments are categorised based on my requirements. You should consider all points and if they could be beneficial to you.

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
F1 – Tiny Li-Ion Charger. F1 – Parasitic drain could be lower.
F1 – Tiny Powerbank with changeable cell. F1 – Cell quite easily knocked even with rubber band.
F1 – charges from any micro-USB charger.
SC2 – Super Fast 3A Charger. SC2 – Display Labels Printed on removable protective film.
SC2 – USB charger output. SC2 – Mode changing a bit tricky.
SC2 – Huge list of compatible cells. SC2 – Cells not quite fully charged.
SC2 – Mains and 12V power options.

 

Discussing the Review:

Please feel free to add comments to the review, but the ideal place to freely discuss these reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

EdgeMatters – Sponsored Reviews (UK based Forum for Knife Makers and Collectors)

CandlePowerForums – Knife Reviews Section (Largest and Friendliest Flashlight Community Forum)

Light Review: FOURSEVENS Quark Click QK2A-X (2xAA)

The original Quark models from FOURSEVENS redefined what a light could be, but with redesign forced upon them, FOURSEVENS had to re-imagine the Quark, and the Quark Click was born. This review is of the QK2A-X model (2AA)

 photo 05 Quark Click engraving P1240116.jpg

Taking a more detailed look:

FOURSEVENS packaging presents the Quark Click so you can get an all round view.
 photo 01 Quark Click boxed P1240094.jpg

Supplied with the QK2A-X is a holster, hand-grip, lanyard, spare O-rings and 2x AA Alkaline cells.
 photo 02 Quark Click unboxed P1240099.jpg

If you already know the Quark holsters, this is the same as all the others I have. The front/back are semi rigid with elasticated sides.
 photo 03 Quark Click holstered P1240107.jpg

On the back is a D-loop and fixed webbing loop.
 photo 04 Quark Click holstered P1240110.jpg

The Quark range have removable steel pocket clips.
 photo 06 Quark Click clip P1240122.jpg

As standard, the Quark Click comes with the ‘Tactical’ forward-clicky switch.
 photo 07 Quark Click rear P1240125.jpg

Being a ‘Tactical’ switch the button protrudes for easy access, so no tail-standing for this one.
 photo 08 Quark Click button P1240128.jpg

The FOURSEVENS logo is laser engraved on the head.
 photo 09 Quark Click engraving logo P1240129.jpg

At the base of the compact textured reflector is a XM-L2 LED.
 photo 10 Quark Click reflector P1240138.jpg

Thanks to the design including a location guide surrounding the LED, the LED is very well aligned with the reflector.
 photo 12 Quark Click LED P1240135.jpg

Taking the head off, and you can see the contacts inside it. These include physical reverse polarity protection.
 photo 11 Quark Click contacts P1240141.jpg

The threads are square and bare metal. They arrive well lubricated.
 photo 13 Quark Click threads P1240146.jpg

Inside the tailcap is a strong spring contact for the negative connection. Due to the use of bare metal threads, the Quark Click cannot be locked-out by unscrewing the tail-cap slightly – instead you must unscrew the head of the Quark Click half a turn.
 photo 14 Quark Click tail contacts P1240150.jpg

And here we have one of the Quarks’ historical features, its lego-ability (change the head, or battery tube, or switch). In this case, simply use a 1xAA long battery tube and this Quark can now use 1xAA or 1×14500 as well as the original 2xAA.
 photo 15 Quark Click 1AA P1240154.jpg

So this is the Quark Click QK2A-X next to 2xAA cells for size reference.
 photo 16 Quark Click size 2AA P1240161.jpg

The same head and switch now on a 1xAA battery tube next to1xAA for size reference.
 photo 17 Quark Click size 1AA P1240162.jpg

Another feature of FOURSEVENS lights is the inclusion of the hand-grip. Not frequently talked about, this is a very useful accessory. Here it is fitted to the QK2A-X.
 photo 18 Quark Click strap P1240168.jpg

Slipping the hand-grip over your fingers positions the Quark like this.
 photo 19 Quark Click strap in hand P1240176.jpg

You position the hand-grip to wherever it is most comfortable for you. This is where I like it, not quite onto my knuckles.
 photo 20 Quark Click strap in hand P1240174.jpg

No need to hold onto the light as the hand-grip does this for you. You hand is free for other tasks (as long as they fit in with keeping the light where you need it).
 photo 21 Quark Click strap in hand P1240171.jpg

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

I’ve always like the Quark beam profile, and the latest Quark Click doesn’t disappoint. Good wide spill, and a hotspot giving good reach make this a great all rounder. If you study the beam close-up on a white wall, it can seem a bit unrefined, but step back and the beam is well diffused and very nice to use.
 photo 22 Quark Click indoor P1240746.jpg

Outdoors and the ultimate brightness of the Quark starts to show its limitations, but that hotspot does give you a reasonable range and the broad spill gives you a wide field of view, even if not the brightest. This is a 2xAA after all.
 photo 23 Quark Click outdoor P1240699.jpg

Modes and User Interface:

In its default configuration the Quark Click has two output modes Low and Max, but the model on test has been reprogrammed to include Moon, Low, Mid and Max/Burst (this customisation was requested as it is offered by FOURSEVENS as standard customisation).

For the default configuration (according to the manual):
To turn ON, either half-press the switch, or fully press it so it clicks.
To toggle between output modes turn the light ON, OFF, then ON again.
The last used mode is memorised if the Quark remains OFF for at least 5 seconds and is used next time you turn it ON.
To turn OFF, release the switch (if half-pressing it), or press it so it clicks and release.

For the customised Quark Click with Moon, Low, Mid, and Max:
To turn on, either half-press the switch, or fully press it so it clicks.
To toggle between output modes turn the light ON, OFF, then ON again – However, you have to cycle through Max, Low three to four times to access the additional modes, so Max, Low, Max, Low, Max, Low, Max, Moon, Low, Mid, Max, Moon……
Now we have another deviation from the standard interface when it comes to memory.
When using the Quark Click in the Max, Low mode selection (before reaching the additional modes) it does not memorise Low, it always starts on Max.
Only if you have selected a mode from the additional mode selection (Moon, Low, Mid, Max) is it memorised. Also it is only memorised if the Quark has been ON that mode for 5s and remains OFF for at least 5 seconds. Then once memorised, as long as there is not a full ON/OFF/ON cycle within 5s, it will remain on that mode.
If you memorise Max mode, the Quark Click returns to the Low/Max mode, and always gives you Max until you carry out the memorisation steps described above.
To turn OFF, release the switch (if half-pressing it), or press it so it clicks and release.

Batteries and output:

The Quark Click QK2A-X in its default configuration runs on 2x AA (Lithium, Alkaline or NiMh). With the additional 1xAA battery tube it will run on 1xAA (Lithium, Alkaline or NiMh) or 1x 14500.

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
Quark Click QK2A-X using specified cell I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
Max/Burst – 2x AA Eneloop 296 0
Medium – 2x AA Eneloop 26 0
Low – 2x AA Eneloop 3 0
Moon – 2x AA Eneloop Below Threshold 0

* Beacon and Strobe output measurements are only estimates as the brief flashes make it difficult to capture the actual output value.

Peak Beam intensity measured 2500 lx @1m giving a beam range of 100 m.

There is no parasitic drain.

In this runtime graph are the output traces from using 2xAA Eneloop, and an AW protected 14500. Running the QK2A-X head on 3V or 4.2V doesn’t increase the maximum output. Both traces show the Burst mode where the first 30s of output are maximum, before dropping to approximately 50% of this. The output is then very well regulated right up to the point the cells become fully depleted.
With the 14500, there is an absolute cut-off when the protection kicks in (it goes OFF), but the 2xAA trace drops sharply, but doesn’t fully cut out.
 photo FOURSEVENS QK2A-X runtime.jpg

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

No issues were encountered during testing.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The Quark Click QK2A-X in use

Anyone following my reviews will know that I consider the 2xAA form-factor one of the best. The QK2A-X has a slim battery tube with slightly larger head and tail-cap. making it very secure in the hand.

Even if you don’t really use pocket clips, it provides a very useful anti-roll function, so I’d rather leave it in place. As pocket clips go, it also has a generous capacity so is easy to use on thicker pocket edges like on some heavy cargo-pants.

With this one being a customised version, I was scratching my head a little when it wouldn’t memorise the low mode, but as explained in the UI section, you need to get to the additional modes before the memory function kicks in. It can seem a little fiddly as to memorise Moon mode you need to turn the Quark Click on and off 5 or 6 times watching the output to catch the Moon mode (miss it and you have to turn it on and off a further 4 times to get back to Moon). It works, but is not the slickest interface.

In most lights, lock-out is provided by undoing the tail-cap half a turn. It is slightly counter intuitive that the Quark uses the head to lock-out the Quark Click, but then again, this also means you can leave the tail-cap clicked on and then use the head to give you a twisty interface. Great for silent use, and twisting the head is very intuitive. Suddenly I’m liking that design feature much more.

With the interface being an ON/OFF/ON to switch modes, you can’t really use the momentary action for signaling. I’ve always preferred the immediacy of the forward-clicky tail-cap switch, so definitely prefer this to a reverse-clicky.

A little comment about the available levels and the Burst mode – Effectively, you have a combined Burst/High output as a single mode. After the initial 30s of Burst, the output drops to a very useful 150lm which is then maintained. Unfortunately it is not possible to directly enter the 150lm mode as it is always proceeded by the 300lm burst mode. When you look at the ANSI output levels this leaves a ‘hole’ in the available output levels as you have 296lm, then down to 26lm, then 3lm then Moon. Really that 150lm level is needed to fill the hole, and it is there, but you have to get through burst mode first.

Having Moon mode memorised, you will notice the FOURSEVENS pre-flash is present for this mode. This is a very quick flash of a level slightly brighter than Moon mode before it settles into the constant output. It has never caused me a problem and is more a characteristic than anything wrong. With the Moon mode being a true Current Controlled output it is far preferable to some PWM control of this level.

PWM – well I might have just mentioned it, but I’m happy to say there is none present in the Quark Click. None of the modes available in this sample exhibited PWM at any frequency.

A classic, game-changing, lego-able design, rebooted with a simple interface and one that can be operated as a clicky or a twisty.

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Excellent All-Rounder beam. Mode memorisation a little laborious in this customised Quark.
Current Controlled output (no PWM). Tail-standing not possible with standard tail-cap.
Lego-able design compatible with all previous Quark models. 150lm output only available after 30s by first using the Burst Mode.
Optional AA and CR123 battery tubes.
Spacious/removable pocket clip provides anti-roll.
Wide input voltage range 0.9-4.2v.
Can be used as a Twisty or Clicky.

 photo 00 Quark Click feature P1240113.jpg

 

Discussing the Review:

Please feel free to add comments to the review, but the ideal place to freely discuss these reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

EdgeMatters – Sponsored Reviews (UK based Forum for Knife Makers and Collectors)

Light Review: NITECORE TM03 (Tiny Monster)

NITECORE have been expanding the Tiny Monster line and with the TM03 have shrunk the monster performance into a single 18650 size light. Now it is even easier to carry Tiny Monster performance with you in the form of the world’s most powerful 1x 18650 light.

 photo 00 TM03 feature P1210997.jpg

Taking a more detailed look:

Following the other TM series lights, the TM03 comes in a tough cardboard box.
 photo 01 TM03 boxed P1210968.jpg

The light is held in place with a strong closed cell foam.
 photo 02 TM03 box open P1210973.jpg

Along with the TM03, a holster, the instructions and a spare o-ring are provided.
 photo 03 TM03 box contents P1210979.jpg

Before we look at the TM03 in more detail, let’s look at the holster. Here it is with the TM03 inside.
 photo 04 TM03 holstered P1210983.jpg

You have the choice of D-loop, fixed loop, or Velcro loop.
 photo 05 TM03 holster loops P1210986.jpg

There is a blue plastic lens protector on the front when it arrives. You MUST remove this before trying the TM03 at all as it will melt and make a mess of the lens if you don’t.
 photo 06 TM03 protector P1210991.jpg

As with the NITECORE Precise series, the TM03 has a dual switch tail-cap. One is a forward clicky standard switch and the other is a metal paddle MODE switch.
 photo 07 TM03 switches P1220001.jpg

Supplied in the TM03 is a special IMR cell, clearly labelled ‘FOR TM03’. It is normal 18650 size, so this gives you and idea of the overall size of the TM03.
 photo 08 TM03 cell out P1220005.jpg

In the tailcap are the two normal contacts.
 photo 09 TM03 tailcap contacts P1220008.jpg

Mainly for heat-sinking, the TM03 has a heavy duty thick walled battery tube.
 photo 10 TM03 tube wall P1220011.jpg

Standard threads are used for the tail-cap.
 photo 11 TM03 threads P1220012.jpg

Back to the dedicated 18650 IMR cell. Notice the dual contacts at the front.
 photo 12 TM03 cell P1220018.jpg

Taking a closer look at the dual contacts on what would normally be the positive end of the cell.
 photo 13 TM03 positive P1220021.jpg

The negative terminal of the cell is standard.
 photo 14 TM03 negative P1220024.jpg

Peering inside the battery tube you can make out the positive contact as well as the secondary contacts surrounding it.
 photo 15 TM03 head contacts P1220028.jpg

Finish is to a high standard as is the engraving.
 photo 16 TM03 engraving P1220030.jpg

Despite the high output, the cooling fins are shallow.
 photo 17 TM03 fins P1220033.jpg

Here is the heart of this Tiny Monster, its monster XHP70 Quad die LED.
 photo 18 TM03 XHP70 LED close P1220045.jpg

The reflector is textured to give a smoother beam, but the reflector also has two profiles specifically controlling how much spill and hotspot the TM03 has.
 photo 19 TM03 XHP70 LED P1220053.jpg

Putting the TM03 next to a normal 18650 light, it is slightly bigger and heavier in build, but has performance that outshines the standard light by a long way.
 photo 20 TM03 size P1220127.jpg

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

With such high output, and indoor shot can easily be overblown, so this is not a representation of how bright the beam is, but the characteristics of the beam. Exposure has been adjusted to show the hotspot, spill, and outer spill. For such a large LED, there is quite a defined hotspot, and the spill is a medium width.
 photo 21 TM03 indoor beam P1230313.jpg

Then we go outdoors, and blast the full 2800lm , and this is the effect you get. The TM03 is bright, and it is very compact. Nice!
 photo 23 TM03 outdoor beam P1240710.jpg

Modes and User Interface:

The TM03 has four constant modes (Turbo, High, Mid and Low) and one flashing (Strobe) mode, controlled by a dual-switch tail-cap.

Basic operation is with the forward-clicky switch; half press for momentary access to the last used constant mode, and fully press and click to turn the TM03 ON to the last used constant mode. (Release or click again to switch off).

When ON, pressing the MODE switch cycles through the output modes – Low, Mid, High, Turbo, Low etc.

The TM03 allows you to set up the direct access operation of the MODE switch in two different modes – Suppressing Light, or STROBE READY.

To swap between these two modes:
Switch the TM03 OFF
Remove and replace the battery.
Within 60s of replacing the battery tighten the tail-cap while pressing and holding the MODE switch.
The TM03 will then flash once to indicate Suppressing Light, and two for STROBE READY.

In Suppressing Light mode:
Direct access to Turbo – in any mode including OFF, press and hold the MODE switch. Release to return to previous output.
Quick access to Strobe – in any mode including OFF, press the MODE switch twice in quick succession. Press again to return to previous output.

In STROBE READY mode:
Direct access to Strobe – in any mode including OFF, press and hold the MODE switch. Release to return to previous output.
Quick access to Turbo – in any mode including OFF, press the MODE switch twice in quick succession. Press again to return to previous output.

When inserting the battery, a red light in the tail-cap flashes to indicate battery power. Three blinks for above 50%, two blinks for below 50% and one blink for less than 10%.

Batteries and output:

The TM03 runs on a supplied proprietary IMR call with dual contacts on one end, but will also run at a severely reduced output on a normal 18650.

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
NITECORE TM03 using specified cell I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
Turbo – TM03 IMR 2804 0
High – TM03 IMR 1501 0
Medium – TM03 IMR 632 0
Low – TM03 IMR 34 0
Max – ‘Normal’ AW IMR 259 0

* Beacon and Strobe output measurements are only estimates as the brief flashes make it difficult to capture the actual output value.

Peak Beam intensity measured 21300 lx @1m giving a beam range of 292 m.

There is parasitic drain and due to the dual contact at the head of the light there is drain at the head, and drain at the tailcap. When using the TM03’s IMR cell, the drain was 1.7mA at the head and 15uA at the tailcap. Taking the worst of these as the only significant value, it is the head drain that is relevant as it will take only 76 days to drain the cell.

NOTE: The use of the AW IMR cell for the ‘normal’ 18650 test was to prove that the throttling of output was not due to a bad cell. The TM03 is drastically throttled when not using the supplied cell and this is no reflection on the AW cell.

This graph has three traces on it to show a couple of specific aspects, including comparing a couple of NITECORE chargers, the SC2 and D4 (both used to charge the TM03s’s cell), and also showing the characteristics depending on if you start in Turbo or High.
The SC2 is a rapid charger, well suited to IMR cells. Due to charging at a higher current, it also tends to terminate earlier. This can be seen with the earlier drop to low mode at around 1h 20m. Considering the vast reduction in charging time, this minor loss in overall output is well worth it.
Then look at the overall characteristics when starting on Turbo where after the initial 2800lm burst, the output drops right down to the 630lm Mid level output, and then continues on this until the cell is depleted.
When starting on High, the output remains on High until the cell can no longer maintain the output and starts to drop in stages, gradually reducing at 20m all the way through to 1h from turn on.
Effectively if you want more light for longer, either stay on High, or you’ll have to switch it OFF and ON again to get Turbo (as long as it is not too hot), and expect not to have much runtime.
 photo TM03 runtime.jpg

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

No issues were encountered during testing.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The TM03 in use

Normally I don’t like to start with a negative, but the TM03 does have one issue, and that is particularly with the Suppression Mode. I have found that when closing the holster flap over the TM03’s tail-cap, it is easy to press (or more dangerously – nearly press) the MODE switch enough to activate direct access Turbo. This means that inside the holster the TM03 bursts into life with all 2800lm. It gets hot VERY fast. Now I also said ‘more dangerously – nearly press’, and the reason it is more dangerous, is that the TM03 is now on a hair trigger needing only a tiny pressure on the holster to bring on the Turbo output. I was putting the TM03 into a drawer and as it nestled against some other items Turbo came on. Luckily I noticed, but I could easily have closed that drawer – for the last time.
So my first comment is that if using the holster you need to undo the tail-cap a half turn (a quarter is not enough) to lock-out the TM03.

Now onto the good stuff. This is a very bright light. Even these days when people are used to high output lights, the TM03 still surprises with its compact size. It is not much bigger than standard 1x 18650 lights, but is a lot more powerful. The heavy build is reassuring and is certainly needed for heat-sinking. I never had the sense the TM03 was getting too hot.

My own views on tactical lighting requirements gathered from various members of the armed services and law enforcement are that Strobe is not the preferred output, but very bright is. The TM03 does VERY bright, very well.

Of course with the fundamental law of portable lighting that you can only have two of the three factors – Bright, Small, Long Runtime, the TM03 looses out in runtime. Mainly this is because if you have the TM03 on you, why would you bother with the Low mode? You will be enjoying all those lumens, using bursts of Turbo, and all too soon it does start to struggle. Not the fault of the TM03, but just a factor to be aware of – this is a Tiny Monster after all.

It was worth the extra effort required to check the parasitic drain at the head, as this explains why after only short periods of storage, the runtime is even more reduced. This level of drain is bad. It is easy to pop a light in a drawer for three months at a time, and in that time the TM03 will be dead. Even if you undo the tail-cap slightly, this doesn’t stop the double pole in the head making contact and draining the cell, you need to remove the cell completely.

With regard to using other 18650 cells, NITECORE have severely hobbled the output on the TM03 when not using its dedicated double pole IMR. The maximum output I managed to get was around 250lm. It does mean that you know you can still have enough light to see by if you carry a normal 18650 as a spare, but once that dedicated IMR is depleted, you need to recharge before you get the TM performance again. At least you know it will work as a backup, and with such extreme performance it is sensible to protect the light and the user from ‘unknown’ cells.

If you want a pocket rocket, the TM03 will not disappoint, and brings custom level performance to a production light.

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
2800lm on a single 18650!! Direct access via the MODE switch too easily activated by the holster flap.
Solid build. High Parasitic Drain.
Direct access to TURBO. Uses a proprietary cell for full performance.
Sturdy holster provided.
Supplied with cell so you only need a charger.

 

Discussing the Review:

Please feel free to add comments to the review, but the ideal place to freely discuss these reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

EdgeMatters – Sponsored Reviews (UK based Forum for Knife Makers and Collectors)

EDC Gear Review: Nite Ize S-Biner with SlideLock, MicroLock plus GearLine

There are some things that are so useful you can’t really image life without them. Nite Ize’s S-Biners are one of those designs that have simply integrated themselves into so many of my every-day activities I’d be lost without them. For some these will need no introduction, but if you haven’t used them before it is very likely the S-Biner is going to find a way into your selection of gear.

 photo 01 NiteIze S-Biner Group boxed P1210803.jpg

A few more details:

In the introduction image are all the versions of the S-Biner featuring in this review, which include the S-Biner – #10, S-Biner – #8, S-Biner SlideLock, S-Biner MicroLock, S-Biner® MicroLock® – Polycarbonate, KeyRack Locker® – Polycarbonate S-Biner® MicroLocks® and GearLine Organization System 4FT.

Moving forward I’m breaking this down into three groups, the larger S-Biners, micro S-Biners and the Gearline system.

Starting with the BIG S-Biner – #10 and S-Biner – #8, plus the S-Biner SlideLock.
 photo 02 NiteIze S-Biner Group1 P1210807.jpg

Here are the first set of S-Biners
 photo 04 NiteIze S-Biner Group1 unboxed P1210814.jpg

The packs say ‘BIG’, and big they are. These are the two largest S-Biner models. They only come in plastic versions and give you the option of a super-sized clip.
 photo 05 NiteIze S-Biner large in hand P1210818.jpg

Of course the SlideLock S-Biners are much more normal in size for clipping keys and anything else to bags, belts etc.
 photo 06 NiteIze S-Biner small in hand P1210829.jpg

With the SlideLock, you can see the black plastic slider on each gate. Here the top one is locked and the other unlocked.
 photo 11 NiteIze S-Biner slide P1210855.jpg

The instructions for the SlideLock are very clear, but you don’t need these, it is obvious how simply and easily they work.
 photo 03 NiteIze S-Biner lock P1210813.jpg

Looking in closer at the slider, it is shaped so that it won’t easily fall off the gate bar.
 photo 12 NiteIze S-Biner slider P1210858.jpg

In the locked position the gate is positively held closed so the S-Biner won’t get twisted off and become lost.
 photo 13 NiteIze S-Biner slide locked P1210865.jpg

Next up are the real key-ring sized S-Biner models the Micro-versions. In this case these all feature the micro-lock design.
 photo 07 NiteIze S-Biner Group2 P1210830.jpg

We have the standard metal S-Biner MicroLock, then the ultra-light Polycarbonate S-Biner® MicroLock®, and lastly the KeyRack Locker® – Polycarbonate S-Biner® MicroLocks® where the keyrack is metal and the S-Biners are Polycarbonate.
 photo 08 NiteIze S-Biner Group2 unboxed P1210841.jpg

The MicroLock is a stroke of genius. With the smaller clips you are often carrying vital objects like keys. Previously the smallest S-Biners were pretty secure, but with the MicroLock you remove all doubt.
In the middle is a small plastic arm which rotates. When aligned lengthways, the gates are unlocked, but when turned cross-ways and clicked into the locked position, both gates are locked shut. Sitting on these or otherwise giving them a hard time won’t shift those gates – believe me, I’ve given them a run for their money and the lock has not let me down.
 photo 09 NiteIze S-Biner micro close P1210846.jpg

Same hand (I take an XL size glove by-the-way) and these are as small as they can be, but still easy to use.
 photo 10 NiteIze S-Biner Group2 in hand P1210852.jpg

Lastly in this review is a logical extension of the usefulness of the S-Biner, and that is the GearLine. This is the GearLine Organization System 4FT.
 photo 15 NiteIze S-Biner gearline P1210873.jpg

This system contains 5 x #2 and 5 x #4 Plastic S-Biners on a special webbing strap with 2 x 12″ Gear Ties, one on each end.
 photo 16 NiteIze S-Biner gearline unboxed P1210880.jpg

The Gear Tie fresh out of the box.
 photo 17 NiteIze S-Biner gearline end P1210883.jpg

Along the webbing strap are a series of loops formed by the double layer of webbing.
 photo 18 NiteIze S-Biner gearline loop P1210887.jpg

Two sizes of plastic S-Biners are used (#2 and #4).
 photo 19 NiteIze S-Biner gearline sizes P1210891.jpg

Quickly comparing the S-Biners in the GearLine system and the three sizes of SlideLock S-Biners.
 photo 20 NiteIze S-Biner gearline comparing P1210894.jpg

Those Gear Ties just untwist and are a stronger version of twisty-ties.
 photo 21 NiteIze S-Biner gearline twist P1210900.jpg

What it is like to use?

Anyone leading an active life and who uses a variety of gear will need and use clips and karabiners of various types. The biggest revelation of the S-Biner design over karabiners is the double-gate. This keeps the item you are carrying secured separately to whatever you are attaching it to. A simple thing, but it means that when you open one gate or the other, you are either releasing the item, or taking the S-Biner off from the attachment point.
With a standard karabiner when you open the gate both the item carried and the fixing point can be released; not always what you want. Intended as true load-bearing devices, the karabiner is usually larger and heavier than you might want. Not only does the S-Biner take a karabiner to a more useful layout, but it is also not as big and heavy, as it is not intended to carry the weight of a person.

When preparing this review I wondered how I would show the extent to which I use these, but while standing there in my photo studio, I just patted myself down and pulled all these out of my pockets/belt. We’ll take these one at a time in a moment, but you see how integrated these are.
 photo 24 NiteIze S-Biner in use P1250369.jpg

So the biggest here is a torch/flashlight pouch which is clipped onto my belt or belt loop, or onto my backpack.
 photo 25 NiteIze S-Biner pouch P1250374.jpg

Mainly a marker, this Glo-Toob is left to flap about (normally on my backpack) so needs the extra security of a locking S-Biner.
 photo 26 NiteIze S-Biner glo-toob P1250377.jpg

A couple of work related items which need to go from one bag to another and the KeyRack holds a SecurID tag and a USB flash drive. There is normally another flash drive on here but it has been lent at this time.
 photo 27 NiteIze S-Biner serureid P1250381.jpg

On this kevlar cord retracting key ring is a MicroLock S-Biner that has been particularly heavily tested. Sat on, caught in doors and accidentally hooked onto this and that, the door entry tag has never come loose.
 photo 28 NiteIze S-Biner door tag P1250386.jpg

Then my keys. Pretty heavily loaded with more non-key items in the wrap, but outside the widgy pry-bar and a TUBE light are held securely with the plastic MicroLocks.
 photo 29 NiteIze S-Biner widgy P1250389.jpg

So that GearLine, where is it? When I go camping I do use this inside the tent, but it also has an every-day use, which for me is in the boot (trunk) of the car. Fixed between two headrest posts, the GearLine gives me lots of fixing points to stop various items moving round. Most often I use this to keep shopping bags from rolling around and emptying themselves, but other things go on and off the S-Biners.
 photo 23 NiteIze S-Biner gearline car P1250346.jpg

The only aspect of the S-Biner that occasionally causes a problem is that there is a groove in each hook where the gate bar sits when it is closed, and when taking the S-Biner out of a tight-fitting loop, sometimes this groove catches and makes it difficult to remove. Other clip designs also have this but the S-Biners somehow seem to catch more than most. I certainly forgive the design this minor flaw as overall the S-Biner makes the karabiner a practical true ever-day carry item and I would not be without them.

The BIG S-Biners also bring this practicality to a much larger scale. I carry the #10 S-Biner as a backpack hook and use it to hang the bag on tree limbs, rails and any other suitable hanging point up to the thickness of your wrist.

You have a choice of size, weights (plastic or metal), materials which are either stronger or anti-scratch as well as two types of lock.

Review Summary

The views expressed in this summary table are from the point of view of the reviewer’s personal use. I am not a member of the armed forces and cannot comment on its use beyond a cutting tool or field/hunting knife.

Something that might be a ‘pro’ for one user can be a ‘con’ for another, so the comments are categorised based on my requirements. You should consider all points and if they could be beneficial to you.

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Double-Gate karabiner design. Sometimes catch when removing from tight loops.
Choice of Sizes. (seriously can’t think of anything else)
Choice of Materials.
Choice of two types of lock.
GearLine extends functionality.

 photo 14 NiteIze S-Biner group 1 2 P1210871.jpg

 

Discussing the Review:

Please feel free to add comments to the review, but the ideal place to freely discuss these reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

EdgeMatters – Sponsored Reviews (UK based Forum for Knife Makers and Collectors)

BladeForums – Knife Reviews (US based Forum for Knife Discussion)

CandlePowerForums – Knife Reviews Section (Largest and Friendliest Flashlight Community Forum)

Light Review: Nitecore’s Explosion Proof EF1

With the EF1, NITECORE have confidently entered the market for hazardous environment equipment, with a light which can be used in the petroleum exploration, petrochemical and chemical industries, as it is rated as a Type II non-mine explosion-proof electrical appliance.

 photo 00 EF1 Feature P1200195.jpg

Taking a more detailed look:

The EF1 arrives in a box like the ones used for the TM series.
 photo 01 EF1 boxed P1200173.jpg

Closed cell foam is used as the liner.
 photo 02 EF1 box open P1200177.jpg

With the EF1 you get a holster, lanyard, spare o-rings and the instructions.
 photo 03 EF1 box contents P1200185.jpg

The EF1 in its holster.
 photo 04 EF1 holster P1200188.jpg

On the back it has a fixed loop, a D-loop and a Velcro closed loop.
 photo 05 EF1 holster loops P1200191.jpg

It is a chunky light, but that is due to its heavy build for the Explosion Proof rating.
 photo 06 EF1 angle P1200197.jpg

The lens is very thick making it look like a dive light.
 photo 07 EF1 lens P1200203.jpg

On the side it proudly states its explosion proof status.
 photo 08 EF1 engraving P1200205.jpg

There are a couple of exposed screws on the head that seem to hold parts of the magnetic switch together.
 photo 09 EF1 screw P1200207.jpg

The switch is a rotating/sliding switch with four positions.
 photo 10 EF1 switch P1200210.jpg

It is difficult to really show how thick this lens is, but it is thick – 10mm thick.
 photo 11 EF1 lens P1200220.jpg

A view from the tail-cap end.
 photo 12 EF1 tail view P1200227.jpg

Inside the tail-cap is a spring and ring terminal.
 photo 13 EF1 tail contacts P1200235.jpg

That is one thick battery tube with a minimum thickness of 3mm.
 photo 14 EF1 battery tube P1200237.jpg

A long section of well lubricated standard threads are used for the tail-cap. They are fully anodised, so you can physically lock out the EF1 by unscrewing the tail-cap slightly.
 photo 15 EF1 battery threads P1200245.jpg

With a battery being inserted you see how thick that battery tube is.
 photo 16 EF1 battery insert P1200248.jpg

Peering deep into the battery tube for a view of the positive contact.
 photo 17 EF1 head contacts P1200256.jpg

The XM-L2 U3 LED sits in a smooth reflector.
 photo 18 EF1 LED P1200261.jpg

It is a relatively deep reflector to focus the beam.
 photo 18 EF1 reflector P1200264.jpg

Next to an 18650 cell you can see the heavy build of this light.
 photo 19 EF1 size P1200286.jpg

Slightly surprisingly, the head does unscrew giving access to the reflector and LED. This may be to provide access to the o-ring to allow it to be inspected.
 photo 20 EF1 head off P1200290.jpg

The detail of those threads for the front part of the light.
 photo 21 EF1 head threads P1200291.jpg

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

Starting off indoors, the EF1’s beam is narrow overall. There is a relatively average sized hotspot, but only a very narrow spill around this. This appears much more suited to inspection duties than general lighting for getting around.
 photo 23 EF1 indoor beam P1230323.jpg

Giving it some more range outdoors and that narrow spill is still an obvious characteristic.
 photo 28 EF1 outdoor beam P1240708.jpg

Modes and User Interface:

Nitecore have kept the interface of the EF1 very simply. There is a four position sliding switch, OFF (0), Low (1), Medium (2) and High (3).

Simply slide the switch to the position you want. There is nothing more to it.

Batteries and output:

The EF1 runs on either 1x 18650 or 2x CR123.

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
EF1 using specified cell I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
High – NL189 729 0
Medium – NL189 341 100
Low – NL189 5 217

* Beacon and Strobe output measurements are only estimates as the brief flashes make it difficult to capture the actual output value.

Peak Beam intensity measured 13900 lx @1m giving a beam range of 236m.

There is parasitic drain which varies between 2.68 and 1.2 mA. When using a 3100mAh 18650 it will take 48-108 days to drain the cell. This is very bad for a standby light.

Initially I was testing the EF1 with an Xtar 3100mAh 18650, but the output figures were not up to specification. Subsequently I re-ran these tests with a Nitecore NL189. With the NL189 the ANSI output was higher, but as you can see the runtime was overall lower. Output is not regulated and drops off during the entire run. In the environments in which you would use this light, you definitely don’t want a sudden drop in output at the wrong time, so this is a better runtime profile to have.
 photo EF1 runtime plus Xtar.jpg

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

No issues were encountered during testing.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The EF1 in use

Before we get any further we must clarify what ‘Explosion proof’ actually means. Firstly, it does not mean you can drop a bomb on it! Instead it relates to the world of hazardous environment equipment, for which there are many different and very specific standards for the various classifications of hazard. The safest equipment are ‘Intrinsically Safe’ devices which are intrinsically incapable of igniting hazardous atmospheres even if destroyed, as no component within them can achieve ignition, including the cells. Then there are the ‘Explosion-Proof’ ratings where the device does indeed contain enough energy to ignite explosive gasses, but critically, should the device have been opened in that hazardous atmosphere and contain an explosive mixture which can be ignited, if there is a small explosion within the device, that explosion is completely contained and cannot propagate into the surrounding atmosphere. The ‘Explosion Proof’ rating is protection from internal explosions.

Now we have got that clear, a direct consequence of the explosion proof rating is that the build is very heavy. Putting the EF1 next to a two cell light, the P36 shows how even though it is a single 18650 light, it really has presence. We are looking at one very tough light.
 photo 22 EF1 size p36 P1200296.jpg

With it being a very solid build, and having a sliding switch, actually the EF1 could also be very suited to diving use. While carrying out my Dive Knives 2016 – Mega Test Review I also took the EF1 with me, but wasn’t able to get any in-use shots. It was ceratinly taken to depths greater than the 1.5m specified, but not more than 10m where I was diving.
One thing I did put the EF1 through was the dive knife corrosion testing (details in the Dive Knives 2016 – Mega Test Review) and this is what happened to the EF1.
Taking in the overall view, the most obvious sign is a small white patch on the handle.
 photo 24 EF1 corrosion P1230810.jpg

Going in closer we can see this is a patch of aluminium corrosion from the salt water exposure. There must have been a small flaw in the anodising for this to have happened.
 photo 25 EF1 corrosion P1230823.jpg

Just next to one screw on the head was a rainbow like colouring on the anodising looking like an oil film. It was perfectly dry and free of oil, and this was only visible after the corrosion test.
 photo 26 EF1 corrosion P1230817.jpg

The last visible effect was that the grease around the sliding switch turned a dark brown/black colour, so was not an inert grease.
 photo 27 EF1 corrosion P1230820.jpg

There were no issues with the EF1 following this intensive corrosion test, and it is still functioning perfectly.

Though we tend to prefer smaller and easier to carry lights, there is a certain satisfaction to carrying the tank-like EF1. Its weight is comforting and there is nothing fragile about it. The slider switch is positive and simple to use and needs no explanation. There is a noticeable delay in the switch response, most notable when switching the EF1 on from OFF. It is probably only 0.3s or thereabouts, but you move the switch, then the EF1 turns on after that brief pause. The same when changing levels.

For my own use, the biggest issue is the mode spacing. It has a useful 5lm Low mode, but then jumps to 341lm. It definitely could have done with something around 80lm-100lm mark instead of jumping right up to 340lm. When the 5lm is not enough, that jump can be blinding.

Not working in a hazardous environment myself, I can’t say if the beam profile is a good fit for this type of use. It certainly seems to be an inspection type of beam rather than one for general use and getting about. I found it too narrow for navigating on rough ground as the hotspot was giving peripheral blindness when shining it at the ground. It is fine for longer distances, just not good closer up.

For the domestic user, there is the attraction of the Explosion Proof rating particularly in case of gas leaks. Personally I have several gas-safe lights including intrinsically safe lights. Those intrinsically safe lights however are all AA Alkaline powered, so the EF1 with its Li-ion power means the output is much higher, and I would consider it totally safe to use in a domestic gas leak situation. Some users would argue that any waterproof light will be safe to use, but this is wrong. If you change the battery and the explosive atmosphere gets inside the light, turning it on could create an explosion that would break out of a normal waterproof light. It would have been fine if you hadn’t opened it, but you did. With the EF1 this would not matter, as if this internal explosion did occur, the EF1 can withstand it – I know what I’d rather be holding.

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Explosion Proof rating. Big jump in output from Low (5lm) to Medium (341lm).
Simple sliding switch. High parasitic drain – remember to lock out the tail-cap.
Predictable gradual drop in output (no sudden cut-out). Narrow spill limits versatility.
Extremely solid build. PWM used on Medium and Low modes.
Excellent corrosion resistance.
Holster supplied.

 photo 00 EF1 Feature P1200217.jpg

 

Discussing the Review:

Please feel free to add comments to the review, but the ideal place to freely discuss these reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

EdgeMatters – Sponsored Reviews (UK based Forum for Knife Makers and Collectors)