Light Review: Streamlight Dualie – 3AA Magnet, 2AA ATEX and Laser ATEX

Streamlight’s Dualie range are not the only dual-beam lights available, so might look familiar. The 3AA version is not new, but the 2AA ATEX and 3AA Laser ATEX are both recent additions for Streamlight, adding more options to this Intrinsically Safe range.

Taking a more detailed look at the Dualie 2AA ATEX:

We are starting with a detailed look at the 2AA ATEX version, but before we do, here are all three Dualie lights on test in this review. The 2AA model arrives in a cardboard box like the 3AA Magnet, with the 3AA Laser in a plastic blister pack.

In the 2AA’s box along with the Dualie is a set of alkaline batteries, a wrist lanyard, an Allen key and the instructions.

Immediately striking is the offset head design of the 2AA.

And this is why it is a Dualie. The flood-light LED in the side of the head.

A better look at that unusual offset battery tube. The top of the pocket clip is kept level with the line of the head of the light.

The tail has a lanyard hole, and also a magnet.

A simple, deep, steel pocket clip is fitted to the 2AA.

The main beam’s switch is the largest, and has a checkered grip pattern.

A close look at the 2AA’s main-beam reflector and LED.

The same LED is used for the side mounted flood beam without any reflector. The side beam’s switch is smaller and has no checkering.

Inside the light’s head are two contacts made from coiled wire.

The coil contacts connect to the battery positive terminal and a contact built-in to the front of the battery tube. The other metal part visible here is the locking screw to fix the head in place.

Instead of screw-threads, the 2AA uses a bayonet fixing for the head / battery tube fitting.

The batteries are now fitted into the body.

Now we see why there is an Allen key included. With the head fitted back onto the body, the locking screw can be tightened.

A requirement of certain Intrinsically Safe standards is that the batteries cannot be replaced in the hazardous environment. This is achieved by use of a locking screw to prevent the light being accidentally opened. Instead you need to use a tool to intentionally open the light.

The head is now locked and can’t be taken off without the screw being loosened.

Ready to go.

Taking a more detailed look at the Dualie 3AA Magnet:

In the 3AA Magnet’s box along with the Dualie is a set of alkaline batteries, a wrist lanyard, and the instructions.

The Dualie 3AA Magnet’s name is due to the two powerful magnets that have been added for more hands free options.

Not ATEX rated, but still intrinsically safe.

One of the magnets is in the very end of the tail which is part of the extended clip.

The other magnet is in the side of the clip.

The clip extension also acts as a hook.

The main beam’s switch is the largest of the two, and has a checkered grip pattern.

For the flood beam on the side there is a second slightly smaller switch which also has a checkered grip pattern.

Looking into the main beam’s reflector and its LED.

A full exposed LED with no reflector provides the flood beam.

To access the battery caddy, the bezel unscrews from the front of the head.

This then allows the main assembly / battery caddy to slide out of the body.

It is a self contained unit with reflector, LEDs, switches, and battery holders.

Each cell holder has spring contacts for the negative terminals.

Plus a coiled positive terminal.

Two cells are fitted to one side, and a single cell into the other.

The threads for the bezel ring are moulded plastic.

Off to work we go.

Taking a more detailed look at the Dualie Laser ATEX:

In the 3AA Laser’s packaging, along with the Dualie is a set of alkaline batteries, an Allen key and the instructions.

It the case of the 3AA Laser, the second beam is a red laser. Intended as a safe ‘pointer’ for communicating clearly what is being discussed in industrial environments.

No mistaking what added feature this light has.

Intrinsically safe and ATEX rated. You might spot one of the ATEX requirements.

I was of course referring to the locking screw.

With the locking screw tightened you can see how it engages with the scalloped edge of the bezel ring, making it impossible to unscrew the bezel without intentionally undoing the screw.

What would have been the window for the flood beam on other Dualie models is covered with a laser warning sticker.

As the laser needs to be projected forwards like the main beam, the main beam’s reflector has been modified with a hole for the laser to shine through.

Another view of the hole for the laser.

As the main purpose of the Laser model is to provide a safe pointer, the clip is a shorter version than on the Magnet model.

Just as with the previous 3AA model, there is a self contained assembly that is removed from the body which contains all the workings of the light.

A brass pill contains the laser module.

Threads are moulded into the plastic body for the removable lens bevel.

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

With three lights, all with dual functions, there are several beam-shots to look at.

First up are the main beams of each and the 3AA Magnet.

Next is the main beam of the 3AA Laser oddly, though its lumen output is virtually identical it appears brighter despite an identical exposure.

The 2AA’s main beam has a much wider spill than the 3AA models, but is noticeably dimmer.

Secondary beams:
As it is the simplest to show, first we have the Laser’s pointer. That’s it. Using it with the main beam masks the spot so it is best not to do this.

With the mix of spot and flood beams, the next set of beamshots show the different beams at a distance.

Here the 2AA starts with the main beam.

Then we go to Flood.

And then both flood and spot beams together.

Changing to the 3AA Magnet starting with the main beam.

Then we go to Flood.

And then both flood and spot beams together.

Now moving outdoors:

The 3AA Magnet; its relatively weak spill fades out and the spot is left.

It is the same with the 3AA Laser.

Spot the spot…

Outdoors the 2AA struggles.

Modes and User Interface:

Operating the Dualie lights is as simple as it gets. Each of the two modes available in each light has its own switch. They can be used independently or together.

The main beam switch is a forward-click momentary type switch, and the secondary side beam switch is a reverse-click type.

Batteries and output:

The naming of each Dualie means there are no surprises that the 2AA runs on 2AA cells (alkaline or NiMh) and the 3AA runs on 3AA cells (alkaline or NiMh). The Laser is bases on the 3AA so runs on 3AA cells (alkaline or NiMh).

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
Dualie model and mode. I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
2AA – Main 103 0
2AA – Flood 75 0
2AA – Main + Flood 122 0
3AA – Main 142 0
3AA – Flood 101 0
3AA – Main + Flood 176 0
Laser – Main 147 0
Laser – Main + Laser 146 0

* Beacon and Strobe output measurements are only estimates as the brief flashes make it difficult to capture the actual output value.

There is no parasitic drain.

For the runtime tests, all measurements were taken with both beams on for all models. Putting all three runtime traces on the same graph, and the lower output 2AA model takes the runtime prize, but at a much lower output.

Removing the 2AA’s trace shows the two 3AA versions more clearly, and it is very obvious the Laser module draws much less power than the flood beam, as the runtime for the Laser is much longer.

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

No issues were encountered during testing.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The Streamlight Dualies in use

Before looking at any other aspect, it is important to highlight that these Dualie lights are Intrinsically Safe. That really is what it says – Intrinsically Safe devices are specifically designed to limit electrical and thermal energy that might be available for ignition. It means they are effectively incapable of igniting specific explosive atmospheres. This is why generally Intrinsically Safe lights are relatively low powered, use alkaline primary cells, and are made from plastic.

Take the most typical domestic scenario; you get back home at night and smell gas in the house. You need light to find the main gas valve (which is in a cupboard) and to get to windows to air your home. Don’t touch that light switch, so what can you use in confidence? An intrinsically safe light specifically designed to be safe to operate in explosive atmospheres of course. As long as you check the certification matches the possible hazard (for example the 3AA Magnet says it is certified for methane / air mixtures only) before you really need it.

I keep a couple of Intrinsically Safe lights in the hall sideboard so I can get my hands on one straight away. I also keep a suitably rated one in the car and in the garage in case of fuel spillages.

Personally, as I don’t work in explosive atmospheres, I mostly keep Intrinsically Safe lights as standby backup lights rather than everyday use ones, but generally always have one close by. If you need this type of light for work, then you will know the regulations and exactly what your requirements are.

What is not clearly shown in the beamshots, is that there is an uneven corona around the hotspot with visible yellowing, they are definitely not the cleanest of beams. This doesn’t truly impact on their use, as it is only when you are white wall hunting and looking for beam defects that you really notice them. When you are getting on with a job, it doesn’t matter that much, and will be the least of your worries if you actually need their Intrinsically Safe aspect.

The magnets are strong enough in the two models that have tail magnets (the 2AA ATEX and 3AA Magnet), that they are able to hold the light at any angle. Taking the worst case, they will stick to a vertical steel surface and keep the light pointing horizontally. I’ve also found this to be true on steel bars as well, so not limited to flat surfaces. On the 3AA Magnet there is the additional magnet in the clip on the side of the light, providing more mounting angles. I use this side-mounted magnet for storage of the 3AA Magnet light, having it hold itself on the side of a metal cabinet ready for use.

It is important to compare like with like, and these Intrinsically Safe lights do not compete with the current Li-ion powered lights in terms of output and beam quality, but that is not a fair comparison. These are lights designed to be simple and safe to use just about anywhere. Two independent lighting functions operated by two switches, reliable and predictable AA power, light weight, tough and Intrinsically Safe. I’m certainly glad to have a few of these lights around.

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Intrinsically Safe. Not the cleanest of beams.
AA powered. Switches need quite a firm press to click.
Simple to use.
Lightweight.
Reliable.
Tough.
Highly functional clips / magnets.

 

Discussing the Review:

The ideal place to discuss this reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

Light Review: Streamlight Super Siege Lantern

In its first incarnation, the Siege lantern was a full size D-cell powered light, shortly followed by the cute Siege AA (you guessed it, powered by AA-cells). But not yet finished, Streamlight have taken the lantern to another level with the Super Siege, which now features a built-in rechargeable battery and USB power bank function, along with an essential glare-guard for task lighting – it certainly is the Super Siege.

Taking a more detailed look:

Aimed at attracting people in a retail store, the box is a semi-exposed ‘try-me’ type.

In the box we have the Super Siege, its glare guard, mains power adapter and a set of three plugs for it (US, UK and European), plus the instructions.

On the glare guard it tells you to give the Super Siege a full charge to disable the ‘try-me’ mode.

A Streamlight mains power adapter, which presumably also works with other rechargeable models as it tells you not to use it with the Alkaline Waypoint.

I need the UK plug, so here it is.

The mains adapter itself has a set of two contacts and a rotary connector for the plug. There is a release lever to allow you to easily swap over the plug type as and when needed.

Ready to go with the plug fitted.

Wrapped round the Super Siege is a large carry handle and hook that lifts up.

There is also a much smaller hanging clip incorporated into the top. This clip allows for a more secure attachment and keeps the light as high as possible.

Flipping the lantern over, and there is an identical hanging clip in the bottom.

The hanging clip in the bottom makes more sense when you see that the diffuser for the main light can be removed exposing the protective dome over the Super Siege’s LEDs.

In the middle of the LED board is a white XM-L2 LED and round this are four red LEDs.

There is a single power switch on the Super Siege which also acts as an indicator light for both charging and using the light. Underneath that switch is a rubber protective cover hiding the charging port and USB power output.

Lifting aside the port cover to show the charging port and USB power output.

Fitting the glare guard to the lantern’s diffuser makes the light output directional, and it covers just over half the diffuser.

To charge the Super Siege, plug in the mains adapter and fit the round DC plug into the socket next to the USB port. Unfortunately the Super Siege cannot be charged from USB power.

When charging the switch lights up red.

On reaching full charge the switch turns green.

Not to be forgotten is that the base has a concealed storage compartment. Twist off the bottom to access this.

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

First up here is the White output with the standard 360 degree lantern beam. You can see the excellent wash of light, but also very clearly the thing I hate about lanterns, terrible glare.

Fit the glare guard and now we are talking. Obviously the total output is cut quite drastically, so it might be better in some cases to position something between you and the lantern, or hang it above your head, but if you are using it as a work light, this becomes ideal.

Red light is not as bad for glare, but mainly due to just being much dimmer.

Again the glare guard makes the Super Siege comfortable to use for any task.

Modes and User Interface:

All controlled via the single power switch there are three White Output Modes, Low, Medium, High, and three Red Output Modes, Low, High and SOS.

To turn the Super Siege ON briefly press the power switch. This will turn on to the last used constant output level (White or Red).

To change output level / mode, briefly press the switch again within 1.5 seconds of the last press. This will cycle through the available modes all the way to OFF.

If the Super Siege has been ON a mode for more than two seconds, one brief press of the switch will turn the light OFF.

To change the colour from White to Red, or Red to White, press and hold the switch for two seconds.

The USB Power Bank function will automatically start when a suitable device is connected. During charging the switch will light up to indicate the status of the battery. Green means full power, then the switch turns yellow, then red and finally flashing red when the battery is getting low.

Batteries and output:

The Super Siege runs on its built-in battery.

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
Super Siege using built-in cell I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
White High 1109 1000
White Medium 550 256
White Low 158 256
Red High 7 0
Red Low 2 0

* Beacon and Strobe output measurements are only estimates as the brief flashes make it difficult to capture the actual output value.

There is parasitic drain but it cannot be measured due to the construction of the light.

A very impressive performance on High for both the maximum output and the runtime. The specified ANSI output value is achieved, and the output does not drop below 600 lumens for over four hours. Finally, at not far off five hours, the Super Siege runs out and shuts off.

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

No issues were encountered during testing.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The Super Siege in use

Lanterns were the first safe and convenient portable source of light. Although they have undergone many changes, the lantern has retained essentially the same appearance and function of area lighting. Just like the original Siege lantern, the Super Siege is a full size lantern, equivalent to most traditional lanterns. It is for those uses where size and weight are not an issue, if that is a priority, the smaller Siege AA becomes a good bet, but lacks the power and features the full size lantern gives.

The Super Siege uses its technological advantages to make it so much more than a portable area light. One of its first key features is so simple and could easily have been added to any lantern – the glare guard. For me this is one of the most critical features, and where I would normally avoid lanterns due to their glare, now I’m picking the Super Siege for all sorts of jobs.

As well as the full lantern and the task light configuration, the diffuser can also be removed to expose the LED dome cover, so you can run the Super Siege with fully exposed LEDs giving the ultimate in flood light. This however has extreme glare and only really works when hung up overhead. With the diffuser removed, the Super Siege is also much smaller. But beware, if you might need the Super Siege’s ability to float, it will only float with the diffuser fitted as this provides enough trapped air to give it sufficient buoyancy.

There are two aspects of the Super Siege that do not work that well. The switch illumination is very bright, and if using the low red output, the switch glows as brightly as the red LEDs do. This is very distracting and means that if you want a dim red light to maintain your eyes dark adaptation, you will find a bright green light shining out from the switch. This also impacts on the USB powerbank function, but more on the in a moment.

The second aspect, which I’m very disappointed to still see is the use of PWM. Especially in a lantern which floods the entire area with light, on the medium and low output levels, you see very obvious strobing effects when moving…at all. Please Streamlight, can you use current controlled output and not PWM?

The compartment in the base is an odd shape, but is useful for keeping a few things in. If nothing else you can keep a USB cable for charging various devices in this compartment.

And on the subject of the power bank feature, this is very useful in these days of so many devices that can be charged from USB. What you must consider however, is that any power you use to charge a device, be it phone, tablet, e-reader etc, is power you rob from the lantern’s light output. So be careful you don’t find yourself in the dark because you charge your phone up. What is a bit of a pity is that the Super Siege needs a 12V power adapter to charge it when the typical power bank these days is also chargeable via USB.

Using a USB power monitor I’ve run several ‘delivered power’ tests, all of which have been a consistent 25.7Wh from the 8800mAh battery. The theoretical power from a 8800mAh battery would be 32.56Wh, which means 79% of this is being delivered. A 21% loss is reasonable, but this could probably be better, as the brightly lit power switch remains on for the entire time the USB power bank feature is being used. The maximum observed output current for the USB power bank was 1.1A.

During use of the USB power bank, the switch illumination goes from green to yellow quite quickly. Watching the accumulated Wh delivered, the switch goes red after around 15Wh have been output, so there is still 40% battery left once the switch turns red. In fact the flashing red indication starts relatively soon afterwards. If I needed the Super Siege for light, I would definitely stop USB charging once the switch illumination turns red, as you at least know there is 40% left.

Ideal for camping, fishing and to have in a shed/loft or other unlit out-building. Altogether the Super Siege gives you a nice rounded package of features all of which are genuinely useful and not a gimmick.

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Powerful 1100lm output. Uses PWM on all output levels.
USB power bank. Using the power bank reduces LED output runtime.
White and Red light output modes. Needs 12V power adapter to charge.
Glare-guard included for task lighting. Output cuts out completely when the battery is low.
Storage compartment in base.
Floats (as long as the main diffuser is fitted).

 

Discussing the Review:

The ideal place to discuss this reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

Light Review: Jetbeam E01R and E10R USB Rechargeable EDC lights

Jetbeam are taking the concept of USB rechargeable EDC lights to a new level of convenience with their super compact E01R (AAA) and E10R (AA/14500), by hiding the charging port so well you would never guess they had this feature just by looking at them.

Taking a more detailed look at the E01R:

Before we go into the detail of the E01R, these are the boxes for both the E01R and E10R models.

Included with the E01R is a USB cable, spare O-ring, quality lanyard, and the instructions.

Not to gloss over that lanyard, the cord is a type of piping with a round cross-section.

This has a sliding toggle to allow you to secure it to your wrist.

Fit and finish is excellent all over this light.

The E01R has a two way clip allowing for carry either way up, and also allowing it to be fitted to a baseball cap peak to act as a headlamp.

A lanyard hole is included in the tail-cap and in the pocket clip.

The power switch is a small metal button on the side of the light’s head.

Though not an ultra compact AAA light, the E01R is still nice and small.

Inside the tail-cap is a gold plated spring terminal.

The threads are almost square, and are well lubricated.

And this is the trick up the E01R’s sleeve. Unscrew the head of the light to reveal the micro-USB charging port.

A closer look at the charging port and threads.

With the head removed, you do not see the battery, instead there is a set of contacts for the connection to the head once refitted. Just next to the spring (at about 2 o’clock) is the indicator LED for charging.

Inside the head are the matching set of contacts.

For the E01R, there is a TIR optic with an XP-G2 LED hidden at its centre.

Unlike a lot of TIR optics, you can just about see the LED.

Charging the cell in the E01R is easy, simply plug in the powered USB cable. The E01R is small, as you can see by how large the USB plug looks.

Taking a more detailed look at the E10R:

Changing over to the E10R, and exactly as with the E01R there is a USB cable, spare O-ring, quality lanyard, and the instructions.

Again the fit and finish is excellent, giving the light a refined look.

The E10R is similar in size, relative to the battery, like the E01R is compared to its battery (so not the smallest AA light). Here the E10R is shown next to its two power source options,the NiMh AA (Eneloop), and a 14500 (an AW 14500).

A small metal button is used for the power switch, which is exactly the same size as the one on the E01R.

Both the clip and the tail-cap have lanyard holes in them.

In the case of the E10R, the clip is a standard type. Even without the tail-cap loosened it is free to rotate to any position around the body.

Inside the tail-cap is a gold plated spring terminal.

The threads are almost square, and are well lubricated.

And like the E01R, unscrew the head of the E10R to reveal the micro-USB charging port.

A closer look at the micro-USB charging port and threads.

With the head removed, you do not see the battery, instead there is a set of contacts for the connection to the head once refitted. Just next to the spring (at about 2 o’clock here) is the indicator LED for charging.

Inside the head are the matching set of contacts.

Charging the cell in the E10R is easy, simply plug in the powered USB cable.

For the E10R, there is a smooth reflector with an XP-L HI LED at its centre.

The charging indicator LED is slightly hidden by a foam PCB cover. Here it is lit, showing the E10R is charging.

Indicating a 14500 is now fully charged, the charging light shows blue. (this is red if a NiMh is used)

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

Although the beginning of the review starts with the E01R, for the beamshots, I’m starting with the E10R’s beam. The combination of the small focused SMO reflector and XP-L HI LED gives a strong hotspot and wide usable spill. A good mixture for a compact EDC light with the output power a 14500 allows.

At exactly the same exposure, the E01R looks a bit weak; this exposure is included to allow a direct comparison.

Adjusting the exposure to show the E01R’s beam more how your eyes would see it, we have a lovely wide smooth beam with a soft and gentle hotspot. A really useful close range beam.

Moving outdoors, and the E10R on 14500 has a reasonable power to give it a bit of range.

The same cannot be said about the E01R as its wide beam runs out of steam very quickly. But don’t forget this is a AAA light.

Modes and User Interface:

Both the E01R and E10R operate in exactly the same way. The only UI difference is the charging indicator.

There are three modes, High, Medium and Low, plus a Strobe mode.

To turn the E01R/E10R ON, briefly press the switch. The last used constant mode is memorised.
To cycle through the modes High, Medium, Low, High, with the E01R/E10R ON, briefly press the switch.
To turn the E01R/E10R OFF, press and hold the switch for 2s.
To access Strobe mode, with the E01R/E10R ON or OFF, rapidly double tap the switch.
To exit Strobe, either briefly press the switch (to change to a constant mode), or press and hold the switch for 2s (to turn OFF).

When charging the E01R, a red light is shown during charging. When fully charged, the red light goes out.
When charging the E10R, using AA the red and green lights come on during charging. When fully charged, the green light goes out.
When charging the E10R, a red light is shown during charging. When fully charged, the blue light is shown.

Both the E01R and E10R have an electronic lockout of the switch. To Lock, from OFF, press and hold the switch for four seconds. The LED will start to blink indicating the Lockout was successful.

To Unlock, press and hold the switch for four seconds, the last use mode will come on.

Batteries and output:

The E01R runs on NiMh AAA (or AAA Alkaline without charging feature).
The E10R runs on NiMh AA (or AA Alkaline without charging feature) or Li-ion 14500.

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
E01R or E10R using specified cell I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
E01R High – AAA 111 0
E01R Medium – AAA 22 0
E01R Low – AAA 2 0
E10R High – AW 14500 457 0
E10R High – AA 164 0
E10R Medium – AA 39 0
E10R Low – AA 3 0

* Beacon and Strobe output measurements are only estimates as the brief flashes make it difficult to capture the actual output value.

There is parasitic drain in both lights. The drain in the E01R when using NiMh AAA was 41.3uA (2.21 years to drain the cell). The drain in the E10R when using NiMh AA was 69.8uA (3.11 years to drain the cell). The drain in the E01R when using 14500 was 86uA (1.19 years to drain the cell).

Where a light has built in charging, to best show how it really performs, the batteries have been charged using the built-in charger; This will show if cells are undercharged. First, note the totally flat output from the E01R, exhibiting excellent regulation on the output. Though the E10R is using an AA NiMh with 2100mAh (compared to the AAA’s 800mAh), overall the performance of the E10R using AA is much closer to the E01R than you might expect when the E10R has nearly three times the cell capacity. This is either due to the built-in charger not fully charging the cell, or the driver circuit showing some inefficiency when powered by AA. The 14500 is where the E10R comes to life with nearly 500lm output, staying above 300lm for 25 minutes and only stepping down to below 200lm after 30 minutes.

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

The first E01R supplied would not charge. This seemed to be due to a connection issue with the micro-USB port. Jetbeam promptly replaced this under warranty and the replacement has functioned perfectly.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The E01R/E10R in use

Many USB rechargeable EDC lights have built-in batteries. Though very convenient, this means there is no option of replacing the battery with a fresh cell if you need more light than one cell will give you. Both the E01R and E10R run from standard cells, so whether you use the built-in charging, or not, you can still swap out empty cells for fresh as needed. Both will also run on an alkaline cell, so you are covered in all ways.

Unlike those convenient EDC lights with built-in cells, the E01R and E10R give you that extra level of confidence. Crucially of course you get the performance of a ‘proper’ light.

By hiding the USB charging port inside the head, the port is protected by the O-ring seal of the head. A simple design feature which makes the light just as waterproof as any other non-rechargeable light. This has got to be one of the most important aspects of the way Jetbeam have designed the charging of theses lights; in the majority of cases a USB charging port does compromise the waterproofing – not here.

My main criticism of these lights is with the UI. Firstly the button is quite small and sometimes not easy to hit first time. Secondly the fact that you need to press and hold the switch for 2s to turn it off is quite annoying. Personally I’d much rather the output went on and off with a brief press, and the mode change was a 2s press, but unfortunately it is not.

Another minor annoyance, but probably unavoidable, is that the clips press onto the side of the head, meaning they rub against the anodising as you unscrew the head for recharging. I lift the clip slightly before unscrewing the head to avoid wearing the anodising prematurely – many wouldn’t bother.

Finding the switch can prove challenging by feel, so it can be a little frustrating when you miss the button. I have made this a bit more reliable by lining up the clip so it is opposite the button, but the clip is not held tightly and can still rotate, so this method can end up failing. Also, in gloves, you have no hope at all of finding where the button is, so end up working your way round the head until you hit the right spot. The flip side to this is that the lines of these lights are very streamlined and clean looking.

Moving past these niggles, and onto the beams, the E01R has an outstanding EDC beam. Wide, smooth and perfect for short distance and indoor use. It is also surprisingly bright even with only 111lm. The levels are very well chosen, with Medium being the most useful for general purposes. Neither model includes a genuinely low, low, moon mode, but the low level at 2-3lm is probably more useful for those situations where you want a low level but your eyes are not fully dark adapted; even if they are, the 2lm level is not shockingly bright (it is amazing how little light your eyes really need if given the chance).

More and more lights are including USB recharging, simply because it is much more convenient to charge the battery without taking it out, (and you don’t need to buy a dedicated charger). Jetbeam have achieved this with the E01R and E10R without compromising the style, integrity or function of the lights, and in the E10R have a charger that can charge NiMh and Li-ion!

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Fully concealed, and O-ring protected, USB charging port. Power switch is fiddly.
Can run on NiMh or Alkaline (and Li-ion for the E10R). Need to hold the switch for 2s to turn off.
Excellent EDC beam. Pocket clip is always free to rotate.
E01R has perfectly regulated output.
E10R’s charging indicator shows if it is NiMh or Li-ion.
Lockout with 1/4 turn of tail-cap.

 

Discussing the Review:

The ideal place to discuss this reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

Light Review: Streamlight Vantage 180

Streamlight make some of the most useful articulated-head lights I’ve ever used. Lights like the Knucklehead, and Sidewinder bring an extra level of functionality with their adjustable heads. For this reason I was particularly excited to get my hands on their latest articulated light, Streamlight’s Vantage 180.

Taking a more detailed look:

The Vantage arrives in a cardboard box.

Inside is the Vantage 180, a pair of Streamlight branded CR123s, the helmet mount with Allen key, plus the instructions.

And here we have the, very orange, Vantage 180. On this side it has ‘Streamlight’ written.

On the other side it has ‘Vantage 180’.

Laying the Vantage 180 on its side shows where the switch is positioned. As you would expect, it is on the opposite side to the clip.

And now we get to the reason for the ‘180’ in the name. Here the head has been rotated 90 degrees to the front.

Then from the previous position, the head rotates a full 180 degrees all the way to the back. There are no click stops, instead it is held in place by friction, so the head can be adjusted to any angle between these two extremes.

With the head either fully forward or backwards you can access the built-in turn out gear hook / hanging loop.

While we are looking at attachment options, there is a special helmet mount included with the Vantage 180. It is an anodised aluminium block with a few special features.

There is a deep helmet rim clamp. Using the supplied Allen keys, these two grub screws are backed right out to allow the mount to be placed over the rim of the helmet. This is specifically designed to fit US issue helmets, so might have limited success on other helmet designs around the world.

Then there is the side onto which the Vantage 180 clips. The round section fits against the Vantage 180’s body, and the T-shaped groove will allow the pocket clip to slide through.

Something extra to mention while looking at the full pocket clip, is a feature that is visible bottom left in this photo; where the clip joins the body there is a slot. The pocket clip can be moved from side to side here, rotating the position of the clip around the body slightly and allowing the user to angle the Vantage 180 up to 15 degrees to either side while it is clipped to their gear.

The feature of this clip that relates specifically to the helmet mount are the two notches each side of the clip. These are what the helmet mount latches on to so it doesn’t slide out of the mount,

Starting to slide the Vantage 180 into the mount. From this side you can see the mount’s release lever.

The mount is now locked in place on the clip.

An overall view of the Vantage 180 fitted to the mount.

A brief reminder of the modes, and how to use them, is printed on the body (more on this later) along with the battery orientation.

There is another special feature of the Vantage 180; it has two beams. This is the second beam, and is itself dual-purpose, either as a blue marker light, or a white secondary beam down-light (more on this later).

Here is a little mystery, I’ve not yet uncovered why there is an interference pattern visible (like oil on water) on the lens. It appears to be an additional layer on the lens front, but not one you are meant to remove, as there is no visible edge that would allow you to remove it. This doesn’t seem to affect the output in any way, so this is just an observation and appears to be normal.

A TIR optic is used.

And this means that when viewed from the front, you can’t see the LED.

The tail-cap has a deep grip pattern making it easy to hold onto.

The simplest of contact design is used, with a single coil spring fitted into the plastic tail-cap.

Though moulded plastic, the threads are sharp and well made. The O-ring is a wedge type.

Being a plastic body, the negative contact needs to connect to the head of the light. This is via a ring contact at the end of the battery tube which is soldered to a metal strip that runs through the battery tube.

Looking into the battery tube you can see the positive contact.

With the head adjusted to 90 degrees, the secondary beam provides downward lighting.

That same secondary beam, also changes to a blue marker light.

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

In this photo, the tail beam has been turned on and (with the head set to the straight position) is a relatively low output blue light.
The main beam is almost entirely hot-spot. The spill is useful, but is quite weak, so this can give a slight tunnel vision effect depending on the environment.

With more range the effect of the weak spill becomes more pronounced, and really the beam becomes just the hotspot.

Modes and User Interface:

The Vantage 180 has two constant output modes for the main beam, High and Low, and two different outputs for the secondary beam, white and blue.

To access High, press the switch once. If you press the switch again within 2s, the Low mode will be selected. Pressing once more within 2s turns the Vantage 180 OFF.

If either High or Low mode is activated, once it has been ON for at least 2s, a single press of the button will turn the Vantage 180 OFF.

The secondary beam is set to be either ON or OFF along with the main beam. The secondary beam cannot be used independently and can only be on if the main beam is on. Its white/blue setting is dictated by the head position.

To set toggle the secondary beam between being ON or OFF, with the Vantage 180 either ON or OFF (it doesn’t matter), press and hold the switch for more than 2s.

With the head set to the straight position, the secondary beam will be blue.

Angling the head towards being a right-angle light, and when the head gets to around 72 degrees, the secondary beam switches from blue to a brighter white.

Batteries and output:

The Vantage 180 runs on 2x CR123.

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
Vantage 180 using specified cell I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
High – CR123 269 0
Low – CR123 98 0

* Beacon and Strobe output measurements are only estimates as the brief flashes make it difficult to capture the actual output value.

There is parasitic drain; when using CR123, the drain was 23.2uA (6.88 years to drain the cells). The tail-cap can be unscrewed two full turns to lock-out the power and stop any drain. However this is enough to prevent the seal being effective, so the Vantage 180 would not be water resistant like this.

The runtime graph shows a nicely regulated output giving nearly two hours on High before the output drops to the Low level. Beyond two and a half hours the output then rapidly declines before dropping to a 22 lumen level which runs on for some time. The Vantage 180 doesn’t leave you in the dark and provides plenty of warning for a battery change.

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

No issues were encountered during testing.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The Vantage 180 in use

Streamlight always manage to build in a great deal of functionality into lights like this, and the Vantage 180 does not disappoint. To start with, the ability to go from a conventional straight torch/flashlight to a right-angle light, or anywhere in between, is so useful. Even if this is when placing the Vantage 180 on a table or the ground to use as a task light, being able to adjust the head, allows it to work where a fixed head light just wouldn’t be much use.

Add to this the clip (with its own adjustment of 15 degrees each way) and hanging loop, and you have a highly functional work light, that will fit into just about any task you need to do.

Then there is the secondary beam. The blue tail-light is mainly for increasing your visibility to others, and this is mainly aimed at Emergency Response personnel who would wear the Vantage 180 on their helmet. For my own purposes, I can’t really think of a sensible use for this blue marker light.

However, rotate that head to activate the down-light, and the Vantage now has ground lighting along with the main beam if you have this fitted to your clothing (or lighting to let you see what you are writing etc.).

But we are not yet finished as there is that solid helmet mount. So as long as it fits the helmet you are using, or can be made to fit) you have a headlamp as well.

In this case it has been fitted to a basic hard-hat and nicely holds onto the rim.

Not everyone will use every feature of the Vantage 180, but you know that it has all that flexibility built-in which provides you with a lot of options.

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Full 180 Degrees of head Rotation. Weak spill beam.
Secondary tail-light / down-light. Doesn’t use rechargeable batteries.
Clip can be adjusted 15 degrees either way. Only two output levels.
Helmet mount included.
Hanging loop built-in.
Unbreakable TIR optic.
Well regulated output.

 

Discussing the Review:

The ideal place to discuss this reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

Light Review: Surefire 2211 Signature Wrist Light

Surefire have expanded the choice in their 2211 Wrist Light range with the addition of the 2211 Signature Wrist Light. This features an integrated watch face (like the Luminox version) which is a special new Surefire branded version.

Taking a more detailed look:

This review sample was a final pre-production example, so had no packaging and has a rubber strap instead of a NATO strap. All other details are the same as a production version.

You might have seen the earlier ‘Luminox’ version of the 2211 Wrist Light, so this large watch may look familiar, but is the new ‘Signature’ model.

At the 3 o’clock position there is an angled, faceted reflector creating Surefire’s “MaxVision Beam”.

And at the 9 o’clock position there is the watch crown and USB charging port.

A bold tactical style watch face is incorporated into the 2211 Signature. Note there is some reflection in the glass of the camera lens so this is not any type of smudging on the watch face.

Being a rechargeable model, the 2211 Signature has a micro-USB B port for maximum compatibility.

For a watch, the body is exceptionally thick, but that is of course because this is a Wrist Light. Remember the strap on the production model is a NATO strap.

The back of the 2211 Signature is a smooth flat plate.

On opposite sides of the 2211 Signature’s body is a rubber covered switch.

A closer look at one of the two switches.

There is a 60-click unidirectional bezel. The watch glass is not specified, so is most likely mineral glass.

On the face there are bold numbers and this is surrounded by clear markings on the dial ring. The hands stand out well with large areas of lume providing the contrast.

An XP-G2 LED sits in the bottom of the angled, faceted reflector of Surefire’s “MaxVision Beam” first seen on the Titan.

Charging is simple, and you just need a Micro-USB charger.

During charging the ‘fuel gauge’ window lights up red. This starts to turn a slightly amber colour and once fully charged it turns green.

The hands have lume on them, but there is no lume on the rest of the watch face.

Strap fitting / changing is easy as the lugs are positioned so that you can release the spring pins using a pusher.

To access the watch, first loosen the two black Allen bolts near the lens of the light.

Then loosen the two Torx grub screws either side of the crown.

You can now lift out the watch.

The recess in the 2211 Signature’s body for the watch to fit in, plus the four fixing points, two bolt holes and two grub screws.

The watch itself is a completely self contained module.

On the back of the case we see the only indication of waterproofing with a 100m water resistant rating (which is not shown on the watch face).

Here you can see one of the four watch back screws. In the centre of the image the slight ding in the plastic case created by the grub screw is visible. The groove in the crown is essential for ease of use, as will be explained in more detail later.

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

Surefire’s “MaxVision Beam” is a lovely smooth part-focused, part-diffused beam that gives you a soft edged hotspot and reasonably wide spill. Here you can see the tendency of a Wrist Light to catch the user’s knuckles in the outer edge of the spill (on the right hand side). We’ll see what this beam looks like with a sight picture later on.

Modes and User Interface:

In this section I’ll be referring to the operation of the Wrist Light rather than the watch. The watch movement is a Citizen 2115 and operates exactly as you would expect a simple date display movement to work.

There are two electronic switches on the body, positioned on the sides at the 12 and 6 o’clock positions. These control the three constant output levels.

To turn the 2211 Signature onto High – pressing either switch once. To turn OFF press either switch after it has been ON for at least 0.5 seconds.

To turn the 2211 Signature ON to Low – pressing either switch twice within 0.5 seconds. This will turn onto High and then to Low. To turn the light OFF, press either switch again once.

To access Low directly on the 2211 Signature – press and hold both switches simultaneously. This will turn ON to Low. If you continue to hold both switches, the output will cycle through Medium, and then High 0.75 seconds apart. Release both switches when the desired output has been reached. To turn the light OFF, press either switch once.

NOTE: Surefire state “Do not activate, deactivate, or adjust your 2211 Signature while holding a firearm.” – heed this warning.

The 2211 Signature has a ‘Fuel Gauge’ LED to indicate the battery charge status during use and while charging. GREEN means the battery is full (or has reached at least 90% when charging). AMBER indicates the battery is low and the output level should be reduced or the 2211 recharged. RED indicates an empty battery and the 2211 should be recharged immediately.

Batteries and output:

The 2211 Signature runs on a built-in battery. For the watch, the Citizen 2115 movement is powered by a SR626SW / 377 / AG4 button cell which is expected to last 2-3 years.

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
Surefire 2211 Signature using built-in cell I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
High 387 0
Medium 77 0
Low 27 0

* Beacon and Strobe output measurements are only estimates as the brief flashes make it difficult to capture the actual output value.

There will be parasitic drain but it cannot be measured due to the design. Long term testing of the Surefire Sidekick would indicate that this drain will be very low.

This particular 2211 Signature sample both over and under performs. Maximum output is more than the specified 300lm output for the first 30 minutes of use, but runtime is lower than the one hour specified. Between 20 and 27 minutes, the output fluctuates by around 55lm where the battery is starting to struggle to maintain the over 340 lm output. This then settles into a gradually stepping down output through the 30 minute mark, dropping more rapidly and reaching the ANSI cut off at 45 minutes of total runtime.

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

No issues were encountered during testing.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The 2211 Signature in use

Although pictured with the rubber strap provided with this sample, in line with the Surefire final specification, I’ve changed this and used it with a NATO / ZULU strap. I have also tried it with a metal bracelet strap just to see how this worked.

It is a really good call by Surefire to go with the NATO strap for the final version as this means that the failure of a single strap pin will not cause the 2211 to fall off (which is the reason for the NATO strap design itself).

For those not familiar with this type of strap, here you can see how the nylon webbing passes behind both strap pins, so if one breaks, it will still be attached to the strap.

In use, I’ve also found (thanks to trying all strap types) how critical it is to have the most stable fitting on your wrist. You need to fit the strap to be snug, as any looseness results in the beam being less controllable and responsive.

You certainly know when you are wearing the 2211 Signature as it has real presence on the wrist. There is definitely a sleeve incompatibility consideration as the depth of the 2211 Signature means it doesn’t easily fit into most sleeves. Taking off a jacket or shirt is not really an option with the 2211 Signature on your wrist. It is better fitted to the outside of a sleeve or glove cuff, but you’ll need to try out a few things to find what works best for you. The ideal arrangement is summer clothing with no sleeves at all.

So, does it work? Based on the 2211 Signature being fitted securely to your support hand wrist, and being turned on before handling a firearm, without even thinking about it, you come up on aim and there is light on the target. You can see that the right hand edge of the spill is showing knuckle shadow, but there is still plenty of light to work within.

Searching, moving and tracking brings the light with your sight picture, and points as naturally as the sights (as long as it is fitted securely and is not loose on the wrist). But you don’t have access to turning it on or off.

A crucial point to note here is that this system does not work if worn on your primary hand, the one holding the gun. Due to the wrist position being too close to the centre line of the gun, the gun hand blocks half of the beam leaving you with only half the target area lit. In my testing this was more or less a vertical line at the point of impact.

Taking this to the next conclusion, the 2211 Signature is only suitable for right handed people (or at least those who hold their gun in their right hand). It must be worn on the support hand, so for left handed people, this means that with the light pointing forwards the watch face will be upside-down if worn on the right wrist. Left handed people may as well go for the non-watch versions of the 2211 range.

Another point to note with the 2211 Signature is due to the crown being positioned at 9 o’clock, you can’t adjust it while wearing it (unless you are a contortionist). The groove in the crown is essential to allow the, effectively recessed, crown to be pulled out using your finger nails; not the easiest crown to use.

Of course, one major advantage is that you are not going to drop this light, so gives you the benefits of hands-free use. Unlike any other hands-free options (excluding gun lights), the location of the light makes it ideal as it naturally points with the gun and doesn’t shine onto the back of the gun (which would create glare).

Like all tactical equipment, one is none (two is one), so I would not see the 2211 Signature as the only lighting option one would carry, but it does give you a really functional option for those instances where it fits in with your clothing. The major advantage of the 2211 Signature over the plain wrist lights Surefire make is that you won’t need to sacrifice wearing a watch, as the 2211 Signature includes a timepiece.

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Hands-free Tactical handgun lighting. Must be worn on the Support hand.
Incorporated Tactical Watch. The Watch is only usable for right handed people.
USB rechargeable. Cannot adjust time/date while wearing it.
‘Fuel Gauge’ battery level indicator.
Smooth and wide beam.

 

Discussing the Review:

The ideal place to discuss this reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

Watchuseek – The Most Visited Watch Forum Site … In The World.

WatchFreeks – The #1 Watch Forum for wrists of all sizes.

Light Review: Olight H1 Nova Headlamp

Inspired by their excellent S1 Baton pocket light (previously reviewed), Olight wanted to bring the same concept of an ultra compact body with high performance output to a headlamp. As will become clear throughout this review they have managed to do just that with the H1 Nova which is a headlamp and pocket light all in one.

Taking a more detailed look:

The reason there are two boxes here is that this review is looking at the CW – Cool White, and NW – Neutral White versions of the H1.

Inside the outer box is a zip-up carry case.

In each of the cases is the H1 in its headband mount, a pocket clip stored on a foam holder, and the instructions held in a mesh pocket.

Laying out the contents of the case.

The main parts are the headband with rubber mount, the H1 Nova light, and a steel pocket clip.

Just like the S1, the H1 has the blue highlights surrounding the lens and switch.

A TIR optic is used, but this also has a hexagonal diffuser pattern to give a flood beam to the XM-L2 LED.

On the top of the H1 is its rubber power switch. This is an electronic click switch.

A plain tail-cap has a hidden magnet.

Though designed as a headlamp, the H1 also has a pocket clip that can be fitted either way up into one of the two grooves in the body.

It is a deep carry type of clip with a secondary ‘catch’ to help it hold onto a pocket edge.

When it arrives, the H1 has a CR123 fitted inside it, but there is also a plastic insulator to stop the H1 from coming on, or having any parasitic drain.

The threads are square cut. In this case there is some chipping to the anodised finish on one side of the thread.

Inside, the tail-cap looks very simple. This is actually the positive contact so doesn’t have a spring. Surrounding the aluminium terminal, there is a ring of the tail-cap magnet visible.

With the less conventional “negative into the tube” contact arrangement, there is a negative terminal spring contact inside the battery tube.

To remind you which way the battery goes in there is a guide marker inside the battery tube.

Refitting the cell after removing the transit insulator, the unconventional cell orientation has the positive terminal of the cell visible.

And we are ready to go.

With the NW and CW versions on test we can compare the beam tint in the next section.

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

In this first beamshot we have the CW version. All beamshot photos are taken with daylight white balance set. Of particular note is how wide the beam is, an excellent flood beam which, although it has a hotspot, this hotspot is large and surrounded by a super wide spill.

Now the NW version and the tint is significantly warmer than the CW and gentler on the eye.

Taking them outdoors, and back to the CW.

I didn’t quite get the beam alignment the same for these comparison photos, but the NW version appears to have a better reach.

Modes and User Interface:

There are five constant modes, Moon, Low, Medium, High and Turbo, plus an SOS mode. Access to these is controlled via the single electronic click switch.

To turn the H1 ON to the last used output level, click the switch once. Click again to turn OFF.
Note: Turbo is only memorised for 10 minutes after which is changes to Medium, and SOS is not memorised.

To change the output level, when ON, press and hold the switch to cycle through Moon (or Turbo), Low, Medium, High, Low etc.
Note: ‘normal’ brightness levels are Low, Medium and High.

For Moon mode, from OFF, press and hold the switch for 1s and the H1 will turn ON to Moon mode. This level is memorised.

For Turbo, from ON or OFF, rapidly double tap the switch. Double tap the switch again to change to the memorised output level.

For SOS, from ON or OFF, rapidly triple tap the switch. To exit SOS carry out any action with the side switch.

The H1 also has an electronic lockout to protect against accidental activation. To LOCK the H1, from OFF, press and hold the switch for 2s. After 1s the H1 will enter Moon mode, but continuing to hold the switch and the moon mode goes off again. The H1 is now Locked Out.

While locked, pressing and holding the switch for less than 1s will activate Moon mode momentarily, going off as soon as the switch is released. Holding it for 2s or more will unlock the H1.

To UNLOCK the H1, press and hold the switch for 2s or more. The Moon mode output will blink briefly to indicate it is unlocked and the H1 will be on in Moon mode.

With the anodised tail-cap threads there is also the option of a mechanical lockout by unscrewing the tail-cap 1/4 to 1/2 turn.

Batteries and output:

The H1 Nova runs on CR123 or RCR123.

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
Olight H1 Nova Version using specified cell. I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
Cool White Turbo – AW RCR123 575 0
Cool White Turbo – CR123 308 0
Cool White High – AW RCR123 193 0
Cool White Medium – AW RCR123 70 0
Cool White Low – AW RCR123 14 0
Cool White Moon – AW RCR123 2 0
Neutral White Turbo – AW RCR123 560 0
Neutral White High – AW RCR123 190 0
Neutral White Medium – AW RCR123 70 0
Neutral White Low – AW RCR123 14 0
Neutral White Moon – AW RCR123 2 0

There is parasitic drain but it is low. When using CR123, the drain was 19.6uA (8.15 years to drain the cell) and when using RCR123, the drain was 23.6uA (3.63 years to drain the cell).

Initially looking at just the first part of the three runtime traces shown in the graph, and the first observation is that the H1 does not achieve full output on CR123 instead requiring a RCR123 for the full 500+ lm. Also note that for the maximum Turbo output the H1 is quite sensitive to the cell condition with the CW run only managing about 45s on Turbo before dropping to High, but the NW taking this to the full 3 minutes of Turbo before ramping down to High. There is more to discuss on this in the full length runtime graph.

Picking up from the previous comment, where the CW only ran at Turbo for 45s (possibly indicating a cell that was not fully charged) it actually managed a slightly longer runtime than the NW (which had the full 3 minutes of Turbo), so in reality the cell had the same level of charge, but the CW terminated Turbo earlier.
Also note that the supplied CR123 has managed approximately the same overall output (though it does tail off and gives a longer total runtime). What is important to note is that when using the RCR123, it’s protection kicks in and the output of the H1 does cut out completely around 5 minutes after dropping down to Medium. If used on Medium for long periods, you won’t have any warning a RCR123 is running low, it will just cut out.

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

No issues were encountered during testing.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The H1 Nova in use

Honestly, before trying out the H1 Nova, I was never a fan of 1xCR123 headlamps. The reasons for this were that many would only work with primary cells (I definitely want the option of rechargeable), and the interface/beam/runtime never seemed a good fit to my needs.

Personally, the critical aspects in a headlamp are no PWM, a flood beam, direct access to moon mode, plus a comfortable headband. Add to this easy conversion to a pocket lamp, and the ability to use rechargeable cells, and you have a winning formula.

Though I prefer rechargeable cells, you often have the issue that output can shut off completely if the protection circuit kicks in. Unfortunately the H1 does have this slight issue, and it can be very disorienting to suddenly lose all light. As the H1 will drop from High to Medium when a RCR123 is getting low, if you are already on Medium, then you don’t get that warning and it will just go off. Using a primary cell completely removes this problem, so depending on your type of use you can pick the cell to suit.

With the switch being very low profile, which helps avoid accidental activation, I have found it difficult to operate reliably. When you don’t hit the middle of the button, but are more to the side, the click is not clean, or might not click at all. As soon as you find the middle of the button, it has a very precise action and works perfectly. Mounted on your head, finding that sweet spot on the button is not always easy, and if wearing gloves, forget it, so the compact design can work against the H1 in this way.

The beamshots really do speak for themselves, and the H1 has a beam that is so easy to get on with. A headlamp is predominately a task light, and when you are carrying out a task you don’t want to have to ‘point’ the beam with your head. When using the H1 as a headlamp you can just focus on the task in hand, and the fact the H1 pretty much disappears from your awareness is the signal it is working really well.

It is great that the H1 is capable of the Turbo output, however, I find that this is rarely used, it is just too bright for anything within arms reach. Moon mode is an essential, and the Low and Medium levels are just right for the vast majority of my needs. If out walking with it, I will use High sometimes when I want that bit more range, but even then Medium is my go-to level.

There is one feature I hadn’t really noticed that much, the gradual brightness changes: When turned on/off on medium, high, and turbo modes, it will turn on or off gradually. This mimics the characteristics of incan bulbs that have to heat up and cool down, making it much kinder to the eyes; Thank you Olight. The reason I hadn’t noticed this much was due to mainly using Low and Medium where the effect is less noticeable. It is more significant with the High and Turbo modes, and does make a difference.

I wouldn’t normally bother to mention the magnetic tail-cap except in passing, but I would like to make a point with the H1, to say that the strength of the magnet is one of the best I’ve come across. Often a magnetic tail-cap can be too aggressive and end up sticking to everything, yet with the H1 it is sufficient to hold the light where you put it, without ‘grabbing’ everything incessantly.

Considering this is based on the excellent S1 Baton, my one slight disappointment is that the parasitic drain is much higher. OK, it is only 20uA, but the S1 is 1uA. Parasitic drain is pure waste, especially with primary cells, so I’d have hoped to see this at the same level as the S1 instead of 20x more.

This does lead me to prefer using the mechanical lockout as this does kill the drain completely, but also the electronic lockout is not ideal to prevent accidental activation as this is too easy to unlock, and if squashed in a bag or pocket, it is very likely the button will be pressed for 2s or more.

Converting the H1 between headlamp and pocket light is very easy, and getting the light out of the rubber mount is no struggle at all. Regular fitting and removal of the pocket clip will mar the anodised finish, but there is not much that could be done about that, so you decide if you want to convert it to and from. I find it most useful as a headlamp, and a bit on the small and lose-able size when taken out of the mount.

So, overall I’ve been won round by this CR123 headlamp, which has been helped by how easy it is to carry (living in my coat pocket), by its very usable interface, the excellent beam, and comfort. There have been far fewer battery changes than I expected, so its practicality has been proven.

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Compact and easy to carry. Though low, the parasitic drain is much higher than the S1 Baton.
Excellent flood beam. Electronic lockout too easy to unlock.
Runs on CR123 and RCR123. When used on RCR123 the cell protection is ultimately triggered, cutting the output completely.
Direct access to Moon mode (and Turbo). Sometimes difficult to press the switch in the right spot.
Very functional UI.
Useful level selection.
Soft ON/OFF is easy on the eyes.

 

Discussing the Review:

The ideal place to discuss this reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

EdgeMatters – Sponsored Reviews (UK based Forum for Knife Makers and Collectors)

Light Review: Nextorch GLO-TOOB, GT-AAA, GT-AAA Pro and GT-LITHIUM

Who doesn’t like a light-stick? Apart from the need for emergency marker lights, there is something great about a tube that just glows, and the main problem with chemical light sticks is that when they are on, they are on; until they go out forever. Nextorch have taken the light-stick and made it battery powered and even more versatile with its GLO-TOOB range. Now the reusable super durable emergency / safety marker light has an on-off switch and flashing modes, and can survive immersion up to depths of 3500m!

Taking a more detailed look at the GT-AAA:

We are going to start with the standard AAA model the GT-AAA, but first here are the three that are on test in their boxes. The Lithium and AAA models are in the older packaging, with the Lithium being the original model. The GT-AAA Pro is a more recent addition and uses updated packaging. One crucial difference between the models is their depth rating for waterproofing. The GT-AAA has the lowest rating at 60m, the GT-AAA Pro is good to 200m, and the ultimate is the GT-LITHIUM which will go to 3500m. (That is not a typo it really is three thousand five hundred metres.)

Back to the GT-AAA, the simplest and cheapest model, and this is what is in the box.

With a frosted casing, the GT-AAA has a keyring on one end and the black twist cap on the other.

Taking that black twist cap off, there is a very simple metal contact disk with raised centre.

The twist-cap’s plastic threads fit onto the aluminium threads of the battery tube.

With an AAA cell next to the GT-AAA you see how big it is.

With the cell inserted, its end slightly protrudes due to the internal spring. This forms part of the ultra simple switching mechanism.

A close up of the threads and O-ring (the end of the battery is also just visible).

Directions for turning the light on and off are marked in the twist-cap.

The LEDs are at the opposite end to the battery cap \ switch which is the keyring end of the GT-AAA.

Taking a more detailed look at the GT-AAA Pro:

There is nothing wrong with the basic AAA model, but the GT-AAA Pro immediately looks much more serious with its clear body and metal battery cap / switch.

Thanks to the clear body, you can see a bit more about what makes the GT-AAA Pro tick (or glow).

You can make out the PCB and LEDs through the casing.

The very end is a frosted finish, and this disguises the other side of the PCB.

In the case of the GT-AAA Pro, the keyring is fitted to a metal post making it much more robust. This also forms part of the switch mechanism; instead of the entire cap being rotated, the keyring and its post are twisted to activate the light.

The entire end cap is metal, so has metal threads instead of plastic.

Look at the middle of the cap. This is the cap in the OFF position.

Twisting the keyring pushes the middle of the cap forward and turns it ON.

With the battery fitted you can see how the middle of the battery cap will make contact with the battery terminal when it pushes out. The cell wrapper acts as an insulator allowing this switching method to work.

On the side are markings to confirm which way round the battery goes in. This follows the almost universal ‘positive terminal in’ direction.

The GT-AAA Pro switched ON.

A closer look at the lit up LEDs.

Taking a more detailed look at the GT-LITHIUM:

Last up is the most serious of all of the GLO-TOOBs, the LITHIUM. Notice that there is a switch cap already fitted, plus a second cap with keyring.

Already fitted to the GLO-TOOB LITHIUM is a click switch. This is mostly metal, but with a rubber switch boot.

On the opposite end of the GLO-TOOB is a black plastic end cap which the other models don’t have.

Having a clear body, like the GT-AAA Pro, you can look inside at the LEDs. In this case 5mm type LEDs are used, but the LED’s clear casing almost disappears in the clear resin used for the body of this light.

The click cap might be easy to use, but for the ultimate in resilience you need to use the diving cap switch (twist switch with keyring), so let’s swap them over.

While we are swapping them over, the contacts on the click switch look like this.

Unlike the GT-AAA Pro, here the keyring and its post are fixed (and you use them to screw the cap into place), with a plastic rotating switch ring instead.

To keep the contacts totally fresh, there is a metal protective cap supplied with the twist switch cap.

Now the protective cap is fitted to the click switch.

A CR123 fitted into the GT-LITHIUM. Battery orientation is marked in the red coloured band.

This version is the Red LED one.

A closer look at the lit up LED.

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

Clearly, being light-stick style, marker lights, there is not really a ‘beam’ to show, instead I’m showing each one at a short distance (3-4m) from the camera.

This is the GT-AAA; actually all three are hanging next to each other on a clip.

At the same exposure, this is the GT-LITHIUM.

With the GT-AAA Pro up last. This appears quite a bit brighter than the GT-AAA.

All of them on at the same time. The red of the GT-LITHIUM is a bit drowned out.

The camera is set to daylight WB (as is the case with all my beamshots) to try to make colour and tint as clear as possible. The amber GT-AAA and GT-AAA Pro take over, masking the GT_LITHIUM’s red colour.

Modes and User Interface:

Each of the GLO-TOOBs is slightly different in its operation so we’ll take them one at a time:

The GT-AAA has three modes, High, Low(25%) and Flash.
To switch ON, tighten the entire end cap.
To cycle through the available modes twist-ON, then twist-OFF, and back on again within 2s and repeat to change from High – Low – Flash – High etc.
To Switch OFF, loosen the entire end cap.

The GT-AAA Pro has three modes, High, Low(25%) and Flash.
To switch ON, turn the keyring as if tightening a screw.
To cycle through the available modes twist-ON, then twist-OFF, and back on again within 2s and repeat to change from High – Low – Flash – High etc.
To Switch OFF, turn the keyring as if loosening a screw.

The GT-LITHIUM has 11 modes, Equal Flash, Beacon Strobe, Fast Strobe, Slow Strobe, SOS, Pulse, Half Flash, Bounce, Ramp Up, 100% Constant On and 25% Constant On.
To switch ON to the memorised mode, either click the switch or turn the end cap.
To switch OFF, either click the switch or turn the end cap.
To set the current output mode, switch ON, count 5s, then switch OFF and ON again. Now you can cycle through the available modes (in the order above) by turning it OFF and ON again until you get to the one you want. To ‘fix’ that mode, simply leave it ON for 4s and it will be memorised.

Batteries and output:

The GT-AAA and GT-AAA Pro run on a single AAA Alkaline cell, and the GT-LITHIUM runs on a CR123.

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
GLO-TOOB model using specified cell I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
GT-AAA High – AAA Alkaline 10 0
GT-AAA Low – AAA Alkaline 2 166
GT-AAA Strobe – AAA Alkaline 10 10.5
GT-AAA Pro High – AAA Alkaline 9 0
GT-AAA Pro Low – AAA Alkaline 3 0
GT-AAA Pro Strobe – AAA Alkaline 9 4
GT-AAA Lithium High – CR123 3 0
GT-AAA Lithium Low – CR123 1 500

* Beacon and Strobe output measurements are only estimates as the brief flashes make it difficult to capture the actual output value.

There is no parasitic drain on any model.

With such low outputs and long runtimes I have not included a runtime graph for any model.

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

There was one slightly odd observation with the GT-AAA Pro. During the first few full runs (turning it onto high with a fresh cell, and leaving it to run until is went off) the PCB end of it started to dome out, as if there was some pressure building inside. It was also observed when fitting a mostly depleted cell and then leaving it on high.
I suspect the cell might have been gassing, and this pressure blowing the PCB out a little.
It was not observed after the fourth cell was used, so might have been connected to something on the PCB creating a pressure build up.
Not being able to replicate it any further, I asked Nextorch about it and they replaced the GLO-TOOB. The replacement did not exhibit this behaviour at all.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The GLO-TOOBs in use

With the GLO-TOOB lights being marker lights, in general, to use them you simply attach the light to whatever you want to mark. The main aspects to discuss here are the user interfaces and battery change.

Each of the three models in the review is constructed differently so despite being similar overall they do feel quite different in use.

Starting with the lowest end model, the GT-AAA, and to operate this you have to turn the entire black cap. Of all three this is the stiffest to operate, and though not requiring much force to turn it, it does require reasonable force to be able to grip the cap strongly enough that you can turn it. This is due to the cap being relatively smooth to hold.

The operation is simple, very immediate and easy to judge as the cap position is obvious. The High output level is clear and has a useful level of light, but in comparison to the other GLO-TOOBs in this review, the Low uses a low frequency PWM making it quite obvious, and the flashing mode is a bit manic, being more of a strobe than a beacon.

Stepping up to the GT-AAA Pro, and there is a leap in performance and build. This time the battery cap is metal, and has a central threaded post which is used to operate the light. Starting with a battery change, you then screw in the cap, and tighten fully; at all times this cap is fully tightened. Now to operate the light, you twist that threaded post using the keyring (or you can hold the ring in place and twist the body. This action is super smooth and possibly the easiest action of all the GLO-TOOBs. It does seem a little vague though as it lacks any real feel until the unit comes on. At this point the action stiffens and becomes a bit grindy; I am slightly worried about over tightening this switch as it might crush the battery.

In terms of output, the High mode is great, making it so much nicer to use. And when it comes to the flashing mode, though not quite a ‘beacon’ the flashes are much slower than the GT-AAA and so much easier to be around. The increased waterproofing and the significantly better low and flashing modes make this Pro model a worthy upgrade to the GT-AAA.

Lastly, the much more serious Lithium model. It is more expensive than the AAA models, but one important reason you might consider this the ‘serious’ version, comes from the CR123A cell’s shelf life. You can put a fresh CR123 in this and leave it for 10 years and it will work. I’d certainly not expect the same out of an alkaline cell. In addition to the power source, the build of the GT-LITHIUM is seriously strong, and it has a ‘diving’ switch cap designed to make this usable to 3500m depth. Not many people will even use that level of waterproofing, but it does mean that overall you are getting a massively robust light. Optionally you can also use the click switch cap instead for a different way of using it.

Now we also have 11 modes to choose from, and my biggest complaint is finding it hard to choose one, as they each provide a different mix of visibility and attention grabbing. My favourite visible but not too manic is the ‘pulse’ mode, with another that works well for me is ‘Bounce’. The others are each so good, you have trouble choosing between them; the only one I’ll never use is the Fast Strobe. Depending on your application, battery life might be a consideration, so the total time the LEDs are lit are a factor. In this case the Slow Strobe or Beacon Strobe would be good choices.

Both switch cap types are equally easy to use. In some ways the click cap makes mode selection easier, but doesn’t have the solid hanging ring or levels of waterproofing as the diving switch cap does. The twist action is a smooth ‘detent’ 1/4 turn to go between on and off. Grip is very good with the deep scallops round the ring.

Unlike the GT-AAA Pro, when fitting the diving switch to the GT-LITHIUM, you now use the keyring to twist the cap on tightly; you can’t use the twist ring itself as it moves.

One of my main reasons to use this type of marker light is as additional safety lighting when cycling. Typically attached to something behind me, I don’t get to see it, so because I like these, I am constantly looking for an excuse to use them. Things like tent marking, or even leaving a slow strobe on my car dashboard when parking the car at night in a public car park are amongst the ‘excuses’ I’ve come up with.

If you like light sticks then these GLO-TOOBs should be on your shopping list.

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
‘On-Demand’, reusable light stick. GT-AAA uses PWM for low mode.
Incredible 3500m waterproofing on the GT-LITHIUM. Light not as evenly spread along the length as a chemical light stick.
GT-LITHIUM has 11 modes to choose from. Currently limited to AAA or CR123 cells (an AA option would be great).
Choice of 3 modes for the AAA versions.
Keyring makes it easy to attach.
Super tough and resilient.

 

Discussing the Review:

The ideal place to discuss this reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

EdgeMatters – Sponsored Reviews (UK based Forum for Knife Makers and Collectors)

Light Review: Olight Valkyrie PL-1 II Pistol Light

The PL-1 II is Olight’s refined and upgraded version of the original PL-1 weapon light. After a year of development Olight have dramatically increased the strength of the mounting mechanism which they claim will NEVER become loose or fall off of any firearm that has a rail.

Taking a more detailed look:

The PL-1 II Arrives in a cardboard box.

Inside the box is the PL-1 II, the instructions, a CR123 cell, a Torx wrench, and a 1913 rail key. The PL-1 II arrives with a Glock rail key already fitted.

Being a pistol/gun light, the PL-1 II is a (mostly) snag free shape with a rail mount on the top. This side has the rail lock lever.

On the other side the rail clamp jaw is fixed.

Rotating the lever 180 degrees to the front opens the rail clamp.

Already fitted is the GL (Glock) universal rail key. You can use this on just about any rail, but if you want the 1913 rail key for a more secure fit, this is supplied and is easily swapped out.

Rotate the locking lever 180 degrees to the rear to lock the clamp jaws in place.

Limited by the size of the light, the reflector needs to focus the beam sufficiently for the ranges you are likely to need.

A Cree XP-L LED is used.

To insert the CR123 cell, unscrew the lens bezel to remove the LED / reflector assembly.

The threads are a nice square cut, bare aluminium, thread.

Robust solid metal contacts are used to connect to the cell positive terminal and to the body contact. These will not scratch off or wear out due to recoil forces.

Inside the light the negative contact is a spring. Also note that surrounding the spring is a rubber buffer pad.

A cell is inserted with the head ready to screw back in.

Here the PL-1 II is mounted on a 1911 training gun (to most obviously show the PL-1 II).

The switches are positioned just in front of the trigger guard, one on each side.

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

There will be more beamshots in the ‘In Use’ section, but here we can see a nice wide and bright hotspot with good width spill.

Modes and User Interface:

Control of the PL-1 II is intentionally very simple. There are three ‘modes’, Constant ON, Momentary ON and Strobe. There are two switches, one on each side.

To turn the PL-1 II ON, briefly press either side switch. To turn OFF, briefly press either side switch.

To turn the PL-1 II ON Momentarily, press and hold either side switch. While you hold the switch the light will remain ON, and will switch off again when you release the switch (as long as the press is at least approx. 0.2s or longer).

For Strobe, press both side switches at the same time. To switch OFF briefly press either side switch.

Batteries and output:

The PL-1 II runs on one CR123.

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
PL-1 II using specified cell I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
High – CR123 387 0

* Beacon and Strobe output measurements are only estimates as the brief flashes make it difficult to capture the actual output value.

There is parasitic drain but is incredibly low. When using CR123, the drain was 0.2uA (798 years to drain the cells) making it negligible as the cell will degrade long before it is run down.

You get a solid 30 minutes of good runtime, and a further 15 minutes where the output is still strong, before the output starts to really decline. Considering you won’t be using this light as a general light (as you only want to point this at potential targets) and won’t have it on all the time, this balance of output and runtime is a good match for how it will be used.

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

No issues were encountered during testing.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The PL-1 II in use

Crucial for any truly ‘tactical’ light (and a pistol light really is the definition of a tactical light) is that it is easy to use. In stressful situations you won’t be ‘thinking’ about how to use something, it must be instinctive.

Here the PL-1 II excels as the user interface is so simple you will be using it right out of the box. The only thing I found out from the instructions was how to activate the strobe. Regular readers will know I don’t have much time for strobe, so I wasn’t looking for it anyway.

It is important to stress that during testing, no part of the PL-1 II shook loose, but I must point out that compared to other similar products, the toolless mount, and screw-in head used in this light have the potential to work loose or be caught on something (in fact my laptop bears the scar of the PL-1 II coming off the gun due to the locking lever catching). This is a very small likelihood, but as other gun lights require tools to tighten the mounts, and won’t open the battery compartment unless removed from the rail, you need to consider both sides of the argument for quick release. Of course, with a toolless mount, you can easily take the PL-1 II on and off the gun (if your holster won’t accommodate a gun light) and you can change the battery while it is still mounted (though I would not recommend it, considering the easy of dismounting this).

The PL-1 II sits very naturally under the frame in front of the trigger guard.

If your hands are big enough, you can activate the switch with your trigger finger, so not requiring a two handed grip to switch the light on. (Clearly not how you would use it in momentary output).

Now, moving onto the sight picture you get with the PL-1 II. Nicely aligned, the sights fall centrally to the hotspot, making pointing extremely natural.

Maintaining your sight alignment and tracking for targets is easy, and at shorter ranges you can use the hotspot as a broad ‘laser sight’ so even if not fully behind your sights the hotspot provides a good guide to the shot placement. These images really speak for themselves.

There is no significant change in balance in the gun as the PL-1 II is light enough at 95g not to weigh down the muzzle.

Overall the PL-1 II gives you and affordable, simple and apparently robust option for a rail mounted pistol/gun light.

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Simple to use. The mount’s locking lever could catching on something releasing the rail clamp.
Robust build.
Good beam profile.
Fully ambidextrous.
Inexpensive compared to other options.
Easily mounted and removed.
Runs on a CR123.

 

Discussing the Review:

The ideal place to discuss this reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

EdgeMatters – Sponsored Reviews (UK based Forum for Knife Makers and Collectors)

Light Review: Nextorch P5x Series with ‘Dual-Light’ LED Swapping Mechanism

Multi-LED lights have always had to compromise the main beam by using multiple smaller reflectors or combined ‘compound’ reflectors, both of which affect the beam considerably and create many beam artifacts. With such powerful LEDs to choose from now, it has become more desirable to make the humble torch/flashlight more versatile by giving it more options. Nextorch have re-thought the concept of multi-LEDs, and designed a ‘Dual-Light’ system that allows the user to actually swap the primary LED that is positioned at the focal point of the reflector, so fully maintaining beam quality. The P5x series of lights (part of the ‘Police’ Series) use a special mechanism that changes the active LED and moves that LED to the centre of the reflector, ensuring the beam quality is uncompromised and giving you two beam options in one light.

Taking a more detailed look:

A few different versions of the P5x were provided, and they had slightly different packaging. The box at the front shows the six variants you can choose from; P5G, P5B, P5R, P5W, P5 UV and P5 IR.

For one of the box styles, this is the inside.

The other box style has a moulded plastic tray insert.

Either way, you get the P5x a Nextorch 18650, a USB charging cable, a lanyard and the instructions.

The LED changing mechanism and built-in USB charging blend into the simple, elegant design.

A flattened section of the grip texture provides a space for the engraving.

If you want to add a lanyard to the P5x, you need to snap on the lanyard ring.

The lanyard ring sits tightly into a groove near the tail-cap.

A sleek tail-cap design hides the USB charging very well.

The power switch protrudes slightly and is easily accessible, however no tail-standing is possible.

If it were not for the small engraving of the USB symbol and an arrow, you might miss the charging function.

Following the arrow, simply pull the tail-cap sleeve up and turn it sideways to lock it open.

A micro-USB socket is used for the charging.

USB charging cable connected.

Opposite the USB socket is a charging indicator light. Red while charging, Green when fully charged.

Taking off the tailcap, the negative contact is a sprung button instead of an exposed spring.

The threads are a standard trapezoidal thread and are bare aluminium.

Peering into the battery tube, the positive terminal is a spring.

Looking closely at the head of the P5x, there is an indicator arrow. Here the White LED is selected.

And now the Green LED is selected.

Our first close-up look at the textured reflector and dual LEDs. The white LED is in the central position.

Now the green LED is centred and active.

With the White LED on.

Then the Green LED on.

White LED centred in the reflector. (Note the yellow phosphor colour.)

Green LED centred in the reflector.

Going in even closer with the XP-L V5 LED in the central position and the green XP-E2 LED to the side.

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

Each P5 light features a white LED (XP-L V5), so I’m only showing one of these as they all look the same. With this being a dual-LED light, the beam is very clean without the artifacts you might expect from a multi-LED light. The spill is a medium width and the hotspot transitioning smoothly into the even spill.
All of the beamshots shown here have the same exposure for all beam variations.

Now onto the interesting secondary-LED options. The Warm LED is quite warm (XP-E2 Warm), in fact it is reminiscent of a good old incan but without the curly filament artifacts. The camera is set to daylight for all beamshots to show the relative colour shift. As with the white beam, the Warm beam is clean and free of artifacts.

Similarly with the green (XP-E2 Red), a nice clean beam.

Being UV (1000mW UV), this beamshot is not a very good representation as there is no fluorescent material in the beam; it makes it look very dark.

An lastly the Red LED (XP-E2 Red). The spill of this beam is slightly wider than the other colours.

Moving outdoors now. Again all exposures are the same. Starting with white.

Onto Warm White.

Green.

Clearly UV is not ideal for lighting up your garden, but that is not why you use it. You can see that there is a good throw, despite the lack of fluorescent materials.

And lastly Red. In this case it was a different evening and there was a light rain which is why the beam is showing up more strongly.

Modes and User Interface:

All of the P5x models have the same simple set of modes and user interface.

Control is via the forward clicky tail-cap switch, and there are two constant modes, High and Low as well as Strobe and SOS. Of course with the Dual-LED, this is the same for each LED.

To Switch ON to High, from OFF, half-press or fully press the switch. Momentary action is always on High.
To access the Low mode, from ON with the switch clicked fully on, half-press the switch briefly to access Low. Low can only be accessed from High with the switch clicked ON.

To switch OFF, either release the switch, if only half-pressing it, or press it fully to click it off.

For Strobe, rapidly double-tap the switch from OFF. This must be half-presses, and once Strobe is activated, you can fully click the switch to lock it on.

For SOS, first the P5x must be ON with the switch fully clicked. It can be in High or Low. Then half-press the switch for 3s and SOS will start.

LED swapping is via the control ring at the base of the head. Rotate this to select the LED. You can do this at any time, whatever mode is selected.

Batteries and output:

The P5x runs on a single 18650, which it can recharge, or two primary CR123s.

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
Nextorch P5x using supplied cell I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
P5W White High 722 0
P5W White Low 51 0
P5W Warm High 365 0
P5W Warm Low 41 0
P5G White High 710 0
P5G White Low 50 0
P5G Green High 163 0
P5G Green Low 31 0
P5UV White High 695 0
P5UV White Low 46 0
P5UV UV High 39 0
P5UV UV Low 5 0
P5R White High 707 0
P5R White Low 41 0
P5R Red High 257 0
P5R Red Low 38 0

* Beacon and Strobe output measurements are only estimates as the brief flashes make it difficult to capture the actual output value.

Peak Beam intensity of the measured 16400 lx @1m giving a beam range of 256 m.

There is parasitic drain at 11uA (27 years to drain the cells).

In this first runtime graph there is also a trace from the green output of the P5G. Compared to the white output, this is longer and lower so is included here to give an indication of the reduced efficiency of the coloured LED.

In the second graph the green output has been removed to better show the white outputs. Instead look at the White output from the P5UV and the Warm output from the P5W. Again the cool white LED is more efficient and provides a longer runtime. The Warm White keeps up with the Cool white up to about 2 hours, then drops off with the Cool white running for another couple of hours.

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

No issues were encountered during testing.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The P5x series in use

I first saw the Nextorch Dual-Light mechanism at IWA 2016 and immediately loved the idea. I asked them if they could add a third LED – yet to be seen – and the reply was ‘maybe’; we can live in hope.

Having used many multi-LED lights with different colours in them, though useful, the beams of the secondary LEDs were always badly compromised, and even the main beam was compromised. The Dual-Light is a revelation with the main LED effectively being swapped with a twist of the selector ring – you don’t even need to turn it off.

A trio of dual-lights getting ready to go.

We have had a detailed look over the P5x lights already, but to really show the mechanism, this is a short video of the way it works.

Although it has the LED swapping function, Nextorch have made the P5x a simple and functional light without any external frills. The LED control ring has slightly raised grips which provide a degree of anti-roll, at least enough for relatively level surfaces. There may not be a ‘tactical grip ring’ but the slightly wider tail-cap is enough to let your grip the light securely, and the grip pattern works well (it is not knurling, as the pattern is cut, not rolled).

Fitting the lanyard ring also gives a little more grip (plus you can have a lanyard), but in doing so, I managed to scratch the anodising both fitting and removing the ring, so if you are going to use it, fit it once and leave it on.

Of course it is very convenient to have built-in USB charging, especially if you travel with the light. What would have been useful is to have some indication of the state of charge. There is none, so it is difficult to know if you need a charge or not. Unfortunately this leads to regular topping-up rather than a more planned approach to charging.

Though limited to two output levels (and I generally prefer a few more options including ultra-low) those levels are well chosen for most uses. The lower level at around 40lm is great for indoor use and is perfectly comfortable to use at close range, and the 700lm High level is a good powerful output which a single 18650 can power without being over-burdened.

In the case of Nextorch’s Dual-Light P5x models, the ‘secondary’ LED is actually not secondary at all, instead you have two ‘primary’ LEDs both of which have full and uncompromised use of the reflector, making them as good as dedicated lights using the same LEDs. Your only difficult choice now is which combination of LEDs to go for.

Check out the Nextorch P5x lights on the Nextorch Website here.

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Two Primary LEDs with Dual-Light mechanism to swap between them. No charge level indication.
Uncompromised beam for both LEDs. Limited choice of levels.
Built-in USB charging. No direct access to Low level.
Simple interface. Lanyard ring causes scratches when fitted.
Full kit supplied – Light, battery, cable.
You can swap the LEDs while the P5x is ON.

 

Discussing the Review:

The ideal place to discuss this reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

EdgeMatters – Sponsored Reviews (UK based Forum for Knife Makers and Collectors)

Light Preview-Review: Jetbeam TH20 Prototype

In this special preview review of Jetbeam’s new TH20 we take a look at a prototype of this super powered single 18650 Tactical Hit Series light. Featuring an extreme output XHP70.2 LED, over 3000lm peak output capability, a new triple-switch tail-cap, a dedicated high current ICR cell, but full compatibility with all standard 18650 cells (flat or button top) as well as CR123 cells, this light has a lot to be interested in.

UPDATE – New Tail-Cap and Reflector Swap – Included at the end of the review.

Taking a more detailed look:

Though it was supplied in a Jetbeam box, as this is a prototype, the TH20 packaging is not finalised, so I’m not showing it here. It may be a single 18650 light, but with such high output ratings, the light is somewhat chunkier than most lights in this class

In this case the TH20 was supplied with an open bottom holster, offering only head-up carry. The holster has a D-loop, and both fixed and Velcro closing belt loops.

The ‘TH’ model prefix comes from being part of the Jetbeam Tactical Hit series of lights.

On this prototype it also has the Niteye branding engraved. I don’t believe this will be included on the final production version.

Apart from the huge output, one of the TH20’s special design features is the triple switch tail-cap. Surrounding the central forward-clicky tactical switch is a rocking paddle-switch which activates when pressed on either side. This gives quick and immediate access to the secondary function whichever way round you are holding the TH20.

Two posts protect the main switch from accidental activation and to a degree protect the paddle-switch; they also hold the pivot pins for the paddle-switch. Note that as this is a prototype you can see the pivot pin protruding slightly which it would not on a production model.

A set of cooling find surround the base of the head where the LED mounting board is located.

Inside the tail-cap shows there are several things going on. The negative contact is a double spring with one sitting within the other. As well as the bare threads that make up a connection, there are a set of contacts around the circuit board. Since this prototype was made, the design has been updated.

Square threads are used which are bare aluminium as they form one of the electrical contacts.

To enable the triple-switch tail-cap design to work, there are extra contacts in the tail-cap, and in turn this needs there to be an additional tube fitted within the body of the TH20 allowing this extra connection to be made from the head to the tail-cap. This design feature is the reason I’ve not been able to measure operating current and parasitic drain for this light.

In this sample, the XHP70.2 LED sits in a textured reflector.

That XHP70.2 LED is a bit of a monster, and is classified by CREE as an ‘Extreme High Power LED’.

The beam

Please be careful not to judge tint based on images you see on a computer screen. Unless properly calibrated, the screen itself will change the perceived tint.

The indoor beamshot is intended to give an idea of the beam shape/quality rather than tint. All beamshots are taken using daylight white balance. The woodwork (stairs and skirting) are painted Farrow & Ball “Off-White”, and the walls are a light sandy colour called ‘String’ again by Farrow & Ball. I don’t actually have a ‘white wall’ in the house to use for this, and the wife won’t have one!

With such a large LED, and a relatively small head (being a single 18650 light) with textured reflector, the TH20 could have been all flood, which, though no bad thing, might be a waste of such a powerful output. However, the TH20 is not all flood, instead you have a well balanced beam with smoothly transitioning hotspot and uniform spill of a reasonable width.

Increase the range, and the hotspot blends even more and you have a super area-light with nothing given a chance to hide in the bright beam.

Modes and User Interface:

The Jetbeam TH20 has four fixed output modes (Turbo, High, Middle, Low) as well as Strobe, however, the output level of the Turbo and Strobe modes depends on if the TH20 is set to High-rate or Low-rate mode.

The TH20 has a special triple switch tail-cap with central forward-click button and a pivoting paddle-switch which provides a button either side of the main click-switch.

As the TH20 is able to work properly with either the special high-discharge cell it is supplied with, or any standard 18650 cell (or even 2xCR123), the design incorporates two output levels for Turbo and Strobe (High-rate or Low-rate). This is set after a new cell is inserted into the TH20.

By default, the action of removing and replacing the cell resets the TH20 to Low-rate mode (and Turbo output). To activate High-rate for Turbo and Strobe, switch ON the TH20 by fully clicking the main switch, then rapidly triple-click either side of the paddle-switch. The output will briefly turn off then on again to indicate it has changed to High-rate output. It will do this whatever output level you are currently using, even Low, but you have prepared the TH20 for High-rate output when using Turbo and Strobe.

To turn onto the last-used constant output mode, either half-press (for momentary use) or fully press-and-click the main switch. To cycle through the output levels Turbo -> High -> Medium -> Low -> Turbo etc, briefly press the paddle-switch.

To access Strobe from OFF, press and hold either side of the paddle-switch. If you hold for less than one second the output is momentary, but if you hold the paddle-switch for more than one second the Strobe will stay on. To turn OFF, either tap the paddle-switch again, or turn the main switch on to activate a constant mode.

To access Strobe from ON, press and hold the paddle-switch and after one second Strobe will start, and stay on for as long as you hold the paddle-switch.

Batteries and output:

The TH20 runs on the supplied specialised high current ICR 4.2V 18650 cell, and when using this cell can be set to run in High-rate output mode. Of course if it could only run on this special cell it would make it a bit limited, so Jetbeam have made the TH20 fully functional using any standard 18650 cell or 2x CR123 cells, but on a ‘low-rate’ Turbo/Strobe output.

The TH20 can use button-top or flat-top cells.

To measure actual output, I built an integrating sphere. See here for more detail. The sensor registers visible light only (so Infra-Red and Ultra-Violet will not be measured).

Please note, all quoted lumen figures are from a DIY integrating sphere, and according to ANSI standards. Although every effort is made to give as accurate a result as possible, they should be taken as an estimate only. The results can be used to compare outputs in this review and others I have published.

___________________________________________ ________________________________ ________________________________
Jetbeam TH20 using specified cell I.S. measured ANSI output Lumens PWM frequency or Strobe frequency (Hz)
___________________________________________ ________________________________ ________________________________
Turbo-High – Supplied HR Cell 2895 0
Turbo-High Steady state during runtime – Supplied HR Cell 1046 0
High – Supplied HR Cell 575 0
Medium – Supplied HR Cell 108 0
Low – Supplied HR Cell 14 0
Turbo-Low – AW 18650 or Supplied HR Cell 1561 0
Turbo-Low – CR123 1046 0

It was not possible to measure parasitic drain due to the double wall battery tube design.

There are several graphs to look at for the TH20 as it provides us with a lot of interesting information. In this first graph are four main power options and their output profiles. These are the High-Rate 18650 supplied with the TH20, a standard 18650 cell (an AW 3100mAh), a 20A IMR 18650 (Efest) and CR123. The CR123 is clearly a backup option only and struggles on the Turbo output. What is pleasing to see, and makes the TH20 very attractive, is that the 20A IMR is really not far behind the specialist cell Jetbeam provide. This means you can easily feed the TH20 with readily available cells.

Looking in at the first part of the graph you can see more easily how the HR and IMR cells run on the High-rate output, and the 18650 and CR123 run on the low-rate output. The CR123s don’t manage any form of ‘burst’ output for Turbo.

To really see what the TH20 can do, in the next test I pushed it to the max by switching it off and on again to reset the Turbo output every time it ramped down – this was to push it as hard as possible. The test was carried out with a strong cooling fan and during this test the highest recorded temperature anywhere on the TH20 was 47C.

Expanding the first part of the graph where the TH20 is working really hard, shows that with a fully charged cell the TH20 can manage three full output bursts, before the bursts start to reduce. After 8 full bursts, the output then drops to under 2000lm, but is still well over 1500lm.

In this last graph I’ve included a direct competitor for the TH20, the NITECORE TM03. The measurements were taken at the same time in the same conditions using the cells supplied by the manufacturers, so is the closest comparison I can make. It is however not the full story. The TM03 is much more dependant on the specialist cell whereas the TH20 is much more compatible and runs very well on an IMR. Also note that though the TM03’s initial burst is longer, the output drops much more, so the TH20 maintains a brighter running level.

Troubleshooting

This section is included to mention any minor niggles I come across during testing, in case the information helps anyone else.

Being a prototype troubleshooting is not that relevant, however just to mention that the original prototype tail-cap design shown has been changed and improved during this preview testing process.

As per the description of this section, this information is provided in case anyone else finds a similar ‘issue’ that might be fixed in the same way.

The TH20 in use

Extreme output lights have their limitations, and you need to understand these to get the most out of yours. One of those limitations is that you will only get those magical monster output figures from fully charged batteries. Once you get down to 80% cell charge or less and those outputs are drooping severely. So how practical are they?

There are several things about the TH20 that for me make it a great deal more practical than some of the other options. The first of these is its support of various power options, from the high-rate special 18650 cell shipped with it, to the ever reliable CR123 which you can use as a backup. Then, to accommodate this feature, Jetbeam have taken a very clever approach of having the TH20 run in two modes, either high-rate or low-rate, for the Turbo and Strobe outputs. If you know the battery you are using can take it, you can switch to high-rate and get that extreme output, but if not, you can leave it in low-rate and run the TH20 in a more typical (but still bright) single 18650 output.

To make this as simple to live with as possible, the TH20 defaults to the low-rate mode whenever the tail-cap is fully removed (as you do when chancing the cell), so you never need to worry about being in the wrong output mode. Should you want to use high-rate output, then turn it on, triple tap that paddle-switch and off you go. If you switch the TH20 into High-rate with a protected 18650 that cannot deal with the current, you will find a very effective way of testing the protection circuit (it will trip).

In true terms, for LEO and Military ‘tactical’ use, a switch needs to be as simple as is can be. In times of high stress you won’t be thinking about modes, or where your thumb is, or where a switch is; you want to hit a big button and have the light come on. Multi-switch, multi-mode lights will, I think, always be more appropriate for enthusiasts or home/self defence users than the professional, but I’ll let you make you own mind up on that.

Having said that, I do think this is one of the best multi-function tactical tail switches I’ve used. Starting with the relationship between the switch and the raised posts either side of it, there is a good amount of protection from accidental activation, yet still plenty of access to the switch, even if you have to go over the top of those posts to press the switch.

The secondary switches both perform the same function so it doesn’t matter which one you hit. Interestingly your thumb most naturally falls onto the main power switch without hitting these secondary switches and you need to positively move your thumb to press them, which is further helped by their rounded edges. To be clear, this is a good thing, as accidentally blasting yourself with over 3000lm of strobe is NOT a good thing, and changing modes when you didn’t want to is also bad. The combination of easy to reach, whichever way round you hold the TH20, and difficult to press by mistake, makes the TH20’s additional switches on the tail-cap a well implemented feature.

Beware that whenever you change the battery or remove the tail-cap, the TH20 will reset to Turbo output. I’ve found this a little frustrating as I’d definitely prefer to start on Low and work my way up, especially if trying to conserve power. However it could be argued that in a ‘tactical’ situation, that after changing the battery you might want to go straight to maximum output.

Another aspect I was not so keen on was the order of the modes. I prefer to change up through modes, starting low and working up in brightness. The TH20 starts high and works down, so taking the default of a new battery being fitted, you are on Turbo, and then have to go to High, Medium, then Low (and then back to Turbo). Again, as with the previous point, in a ‘tactical’ situation, it is preferable that if the mode switch is accidentally pressed, instead of going from Turbo to Low, you go from Turbo to High, still leaving you with lots of light; so being a ‘Tactical Hit Series’ light the design choice makes sense.

Of course, the TH20 is bigger and heavier than most single 18650 lights, but that is because it houses an extreme output LED and the circuitry needed to drive it, giving you the ability to output bursts of over 3000lm. The TH20 is a heavy-duty single 18650 light that, thanks to that extra mass and solid build, even during the stress test (where the it was run at a constant maximum output by resetting every 60s), did not heat up excessively, nor suffer from thermal output throttling.

By using the easily available 18650 for power but staying away from proprietary cells, Jetbeam have really done us a favour and made the light much more useful, versatile and future-proof.

Review Summary

_______________________________________________ _______________________________________________
Things I like What doesn’t work so well for me
_______________________________________________ _______________________________________________
Extreme brightness output from one 18650. Does not appear to quite reach specified output.
High and Low rate outputs to suit the cell being used. Resets to Turbo Output when changing the battery.
Monster XHP70.2 LED. Open bottom holster exposes the switches.
Functional Triple-switch tail-cap.
Compatible with any standard button-top or flat-top 18650 cell.
Can use CR123 cells.

UPDATE – New Tail-Cap and Reflector Swap:

This update includes a few details not available when the review was originally posted. The tail-cap design has been updated and there are two reflector options. With my preference for (OP) textured reflectors, I’ve swapped the reflector in the newer higher output sample.

Starting with the prototype, the bezel ring is unscrewed and the lens, o-ring and reflector are easily taken out. If you do this make sure you don’t touch the inside of the reflector.

The lens is a good thickness, being nearly 3mm thick.

There is a groove around the reflector for the o-ring to sit in.

Here are the OP and SMO reflectors.

Before putting things back together, a quick look at the brass pill with LED and mounting board.

Although the initial prototype will be shelved, it has the SMO reflector fitted to show both options.

Lastly, we have the updated contacts inside the tail-cap. To save lots of scrolling back up, first here is the prototype tail-cap.

Then we have the updated version.

 

Discussing the Review:

The ideal place to discuss this reviews is on a forum. If you started reading the shorter forum version of the review, but followed the link this full exclusive review, please return to that forum to discuss the review there.
If you read the review entirely on Tactical Reviews, please consider one of the following to join in any discussion.

CandlePowerForums – Flashlight Reviews Section (Largest and Friendliest Flashlight Community Forum)

EdgeMatters – Sponsored Reviews (UK based Forum for Knife Makers and Collectors)